• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOld WestburyOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    RRAM Device Optimization and Circuit Design for Low Power Low Latency Domain Specific Edge Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Minhaz_Thesis_final.pdf
    Size:
    5.332Mb
    Format:
    PDF
    Description:
    Final Dissertation Submission
    Download
    Thumbnail
    Name:
    Minhaz_dissertation_approval_f ...
    Size:
    459.4Kb
    Format:
    PDF
    Description:
    Dissertation Approval Form
    Download
    Thumbnail
    Name:
    Distribution License_filled.pdf
    Size:
    169.0Kb
    Format:
    PDF
    Description:
    Distribution license
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Abedin, Minhaz Ibna
    Keyword
    In-memory computation
    RRAM memory
    Binary switching
    Multilayer switching
    Analog switching
    RRAM analog switching properties
    Readers/Advisors
    Vallee, Christophe
    Beckman, Karsten
    Tokranova, Natalya
    Cao, Yu
    Cady, Nathaniel, Chair
    Term and Year
    Spring 2023
    Date Published
    2023-05
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/8688
    Abstract
    Conventional von Neumann computing architecture has little parallelism and physically divides memory and logic units. In-memory computation offers further opportunity for power and efficiency improvements as data transport between memory and logic units introduces substantial power consumption and latency. RRAM memory devices are a non-volatile, highly scalable alternative that is compatible with advanced logic CMOS processes. Because of its in-memory computing capabilities, it is a more appealing solution for data-intensive applications. Depending on the needs of the application, RRAM's different switching types such as binary switching, multilayer switching, and analog switching can be employed. These devices can be utilized in applications where they must continuously update their condition (e.g neural network training). The RRAM memory system can be of great use in applications where the device must continuously maintain the resistance state as well, either with or without in-memory processing. Moreover, RRAM devices are currently being researched for in-sensor or near-sensor applications to speed up AI inference. The diversity of RRAM switching schemes and application range creates vast research opportunities to examine the viability of these devices. Hence, leveraging RRAM’s unique switching properties analog (continuous) or binary/multilevel switching, in-memory computation scheme (MAC or bit-wise) as well as integration location (in-pixel, near pixel or memory) there is still a wide range of different applications yet to be explored. In this work, RRAM analog switching properties of based on different materials stacks, inference-like applications such as error correcting code implementation, genome alignment, and in-sensor AI inference acceleration have been investigated.
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.