Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Journal title
PloS oneDate Published
2012-11-05Publication Volume
7Publication Issue
11Publication Begin page
e48216
Metadata
Show full item recordAbstract
Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a theoretical framework that can account for perceptual processes, including feedforward recognition and feedback modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference, even using approximate methods, very computationally expensive. Thus, existing object perception models based on this approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance). Crucially, the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to build models of hierarchical perceptual organization that include top-down and bottom-up interactions, for example, in other sensory modalities.Citation
Dura-Bernal S, Wennekers T, Denham SL. Top-down feedback in an HMAX-like cortical model of object perception based on hierarchical Bayesian networks and belief propagation. PLoS One. 2012;7(11):e48216. doi: 10.1371/journal.pone.0048216. Epub 2012 Nov 5. PMID: 23139765; PMCID: PMC3489785.DOI
10.1371/journal.pone.0048216ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0048216
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related articles
- The role of feedback in a hierarchical model of object perception.
- Authors: Dura-Bernal S, Wennekers T, Denham SL
- Issue date: 2011
- Perceptual inference.
- Authors: Aggelopoulos NC
- Issue date: 2015 Aug
- Hierarchical Bayesian inference in the visual cortex.
- Authors: Lee TS, Mumford D
- Issue date: 2003 Jul
- Towards a mathematical theory of cortical micro-circuits.
- Authors: George D, Hawkins J
- Issue date: 2009 Oct
- Excitatory versus inhibitory feedback in Bayesian formulations of scene construction.
- Authors: Abadi AK, Yahya K, Amini M, Friston K, Heinke D
- Issue date: 2019 May 31