Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Lytton, William WSeidenstein, Alexandra H
Dura-Bernal, Salvador
McDougal, Robert A
Schürmann, Felix
Hines, Michael L
Journal title
Neural computationDate Published
2016-08-24Publication Volume
28Publication Issue
10Publication Begin page
2063Publication End page
90
Metadata
Show full item recordAbstract
Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500-100,000 cells), and using different numbers of nodes (1-256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.Citation
Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schürmann F, Hines ML. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput. 2016 Oct;28(10):2063-90. doi: 10.1162/NECO_a_00876. Epub 2016 Aug 24. PMID: 27557104; PMCID: PMC5295685.DOI
10.1162/NECO_a_00876ae974a485f413a2113503eed53cd6c53
10.1162/NECO_a_00876
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International