Show simple item record

dc.contributor.authorDura-Bernal, Salvador
dc.contributor.authorSuter, Benjamin A
dc.contributor.authorGleeson, Padraig
dc.contributor.authorCantarelli, Matteo
dc.contributor.authorQuintana, Adrian
dc.contributor.authorRodriguez, Facundo
dc.contributor.authorKedziora, David J
dc.contributor.authorChadderdon, George L
dc.contributor.authorKerr, Cliff C
dc.contributor.authorNeymotin, Samuel A
dc.contributor.authorMcDougal, Robert A
dc.contributor.authorHines, Michael
dc.contributor.authorShepherd, Gordon Mg
dc.contributor.authorLytton, William W
dc.date.accessioned2023-04-10T16:15:20Z
dc.date.available2023-04-10T16:15:20Z
dc.date.issued2019-04-26
dc.identifier.citationDura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. Elife. 2019 Apr 26;8:e44494. doi: 10.7554/eLife.44494. PMID: 31025934; PMCID: PMC6534378.en_US
dc.identifier.eissn2050-084X
dc.identifier.doi10.7554/eLife.44494
dc.identifier.pmid31025934
dc.identifier.urihttp://hdl.handle.net/20.500.12648/8567
dc.description.abstractBiophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
dc.language.isoenen_US
dc.relation.urlhttps://elifesciences.org/articles/44494en_US
dc.rights© 2019, Dura-Bernal et al.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcircuitsen_US
dc.subjectcomputational biologyen_US
dc.subjectmodelingen_US
dc.subjectmultiscaleen_US
dc.subjectnetworksen_US
dc.subjectneuronalen_US
dc.subjectneuroscienceen_US
dc.subjectsimulationen_US
dc.subjectsystems biologyen_US
dc.titleNetPyNE, a tool for data-driven multiscale modeling of brain circuits.en_US
dc.typeArticle/Reviewen_US
dc.source.journaltitleeLifeen_US
dc.source.volume8
dc.source.countryUnited States
dc.source.countryUnited Kingdom
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited Kingdom
dc.source.countryInternational
dc.source.countryUnited States
dc.source.countryInternational
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryEngland
dc.description.versionVoRen_US
refterms.dateFOA2023-04-10T16:15:21Z
html.description.abstractBiophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena.
dc.description.institutionSUNY Downstateen_US
dc.description.departmentPhysiology and Pharmacologyen_US
dc.description.departmentNathan Kline Institute for Psychiatric Researchen_US
dc.description.degreelevelN/Aen_US
dc.identifier.journaleLife


Files in this item

Thumbnail
Name:
elife-44494-v3.pdf
Size:
5.895Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

© 2019, Dura-Bernal et al.
Except where otherwise noted, this item's license is described as © 2019, Dura-Bernal et al.