Brain Uptake of Folate Forms in the Presence of Folate Receptor Alpha Antibodies in Young Rats: Folate and Antibody Distribution
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Keyword
Food ScienceNutrition and Dietetics
folate
folate receptor alpha
levofolinate
brain uptake
autism
cerebral folate deficiency
Journal title
NutrientsDate Published
2023-02-25Publication Volume
15Publication Issue
5Publication Begin page
1167
Metadata
Show full item recordAbstract
In a rat model, following exposure to rat folate receptor alpha antibodies (FRαAb) during gestation, FRαAb accumulates in the placenta and the fetus and blocks folate transport to the fetal brain and produces behavioral deficits in the offspring. These deficits could be prevented with folinic acid. Therefore, we sought to evaluate folate transport to the brain in young rat pups and determine what effect FRαAb has on this process, to better understand the folate receptor autoimmune disorder associated with cerebral folate deficiency (CFD) in autism spectrum disorders (ASD). When injected intraperitoneally (IP), FRαAb localizes to the choroid plexus and blood vessels including the capillaries throughout the brain parenchyma. Biotin-tagged folic acid shows distribution in the white matter tracts in the cerebrum and cerebellum. Since these antibodies can block folate transport to the brain, we orally administered various folate forms to identify the form that is better-absorbed and transported to the brain and is most effective in restoring cerebral folate status in the presence of FRαAb. The three forms of folate, namely folic acid, D,L-folinic acid and levofolinate, are converted to methylfolate while L-methylfolate is absorbed as such and all are efficiently distributed to the brain. However, significantly higher folate concentration is seen in the cerebrum and cerebellum with levofolinate in the presence or absence of FRαAb. Our results in the rat model support testing levofolinate to treat CFD in children with ASD.Citation
Bobrowski-Khoury N, Sequeira JM, Quadros EV. Brain Uptake of Folate Forms in the Presence of Folate Receptor Alpha Antibodies in Young Rats: Folate and Antibody Distribution. Nutrients. 2023; 15(5):1167. https://doi.org/10.3390/nu15051167DOI
10.3390/nu15051167ae974a485f413a2113503eed53cd6c53
10.3390/nu15051167
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Brain Uptake of Folate Forms in the Presence of Folate Receptor Alpha Antibodies in Young Rats: Folate and Antibody Distribution.Bobrowski-Khoury, Natasha; Sequeira, Jeffrey M; Quadros, Edward V (2023-02-25)In a rat model, following exposure to rat folate receptor alpha antibodies (FRαAb) during gestation, FRαAb accumulates in the placenta and the fetus and blocks folate transport to the fetal brain and produces behavioral deficits in the offspring. These deficits could be prevented with folinic acid. Therefore, we sought to evaluate folate transport to the brain in young rat pups and determine what effect FRαAb has on this process, to better understand the folate receptor autoimmune disorder associated with cerebral folate deficiency (CFD) in autism spectrum disorders (ASD). When injected intraperitoneally (IP), FRαAb localizes to the choroid plexus and blood vessels including the capillaries throughout the brain parenchyma. Biotin-tagged folic acid shows distribution in the white matter tracts in the cerebrum and cerebellum. Since these antibodies can block folate transport to the brain, we orally administered various folate forms to identify the form that is better-absorbed and transported to the brain and is most effective in restoring cerebral folate status in the presence of FRαAb. The three forms of folate, namely folic acid, D,L-folinic acid and levofolinate, are converted to methylfolate while L-methylfolate is absorbed as such and all are efficiently distributed to the brain. However, significantly higher folate concentration is seen in the cerebrum and cerebellum with levofolinate in the presence or absence of FRαAb. Our results in the rat model support testing levofolinate to treat CFD in children with ASD.
-
Absorption and Tissue Distribution of Folate Forms in Rats: Indications for Specific Folate Form Supplementation during Pregnancy.Bobrowski-Khoury, Natasha; Sequeira, Jeffrey M; Arning, Erland; Bottiglieri, Teodoro; Quadros, Edward V (2022-06-09)Food fortification and folic acid supplementation during pregnancy have been implemented as strategies to prevent fetal malformations during pregnancy. However, with the emergence of conditions where folate metabolism and transport are disrupted, such as folate receptor alpha autoantibody (FRαAb)-induced folate deficiency, it is critical to find a folate form that is effective and safe for pharmacologic dosing for prolonged periods. Therefore, in this study, we explored the absorption and tissue distribution of folic acid (PGA), 5-methyl-tetrahydrofolate (MTHF), l-folinic acid (levofolinate), and d,l-folinic acid (Leucovorin) in adult rats. During absorption, all forms are converted to MTHF while some unconverted folate form is transported into the blood, especially PGA. The study confirms the rapid distribution of absorbed folate to the placenta and fetus. FRαAb administered, also accumulates rapidly in the placenta and blocks folate transport to the fetus and high folate concentrations are needed to circumvent or overcome the blocking of FRα. In the presence of FRαAb, both Leucovorin and levofolinate are absorbed and distributed to tissues better than the other forms. However, only 50% of the leucovorin is metabolically active whereas levofolinate is fully active and generates higher tetrahydrofolate (THF). Because levofolinate can readily incorporate into the folate cycle without needing methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) in the first pass and is relatively stable, it should be the folate form of choice during pregnancy, other disorders where large daily doses of folate are needed, and food fortification.
-
Cerebral Folate Deficiency Syndrome: Early Diagnosis, Intervention and Treatment StrategiesRamaekers, Vincent Th.; Quadros, Edward V. (MDPI AG, 2022-07-28)Cerebral folate deficiency syndrome (CFDS) is defined as any neuropsychiatric or developmental disorder characterized by decreased CSF folate levels in the presence of normal folate status outside the nervous system. The specific clinical profile appears to be largely determined by the presence or absence of intrauterine folate deficiency as well as postnatal age at which cerebral folate deficiency occurs. The primary cause of CFDS is identified as the presence of serum folate receptor-alpha (FRα) autoantibodies impairing folate transport across the choroid plexus to the brain whereas, in a minority of cases, mitochondrial disorders, inborn errors of metabolism and loss of function mutations of the FRα (FOLR1) gene are identified. Early recognition and diagnosis of CFDS and prompt intervention is important to improve prognosis with successful outcomes. In this article we focus on FRα autoimmunity and its different age-dependent clinical syndromes, the diagnostic criteria, and treatments to be considered, including prevention strategies in this at-risk population.