• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development and Fabrication of Low Voltage (600 V) to High Voltage (15 kV) 4H-Silicon Carbide (SiC) Power Devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD_Dissertation_NickYun_Final.pdf
    Size:
    20.00Mb
    Format:
    PDF
    Description:
    Final Dissertation Submission
    Download
    Thumbnail
    Name:
    Nick Yun-Dissertation form-121 ...
    Size:
    364.8Kb
    Format:
    PDF
    Description:
    Dissertation Approval Form
    Download
    Thumbnail
    Name:
    Distribution License_NY.pdf
    Size:
    105.2Kb
    Format:
    PDF
    Description:
    Distribution license
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Yun, Nick (Nung Jun)
    Keyword
    4H-Silicon Carbide (SiC) Power Devices -- Development and Fabrication
    Silicon (Si)-based Power Devices
    Readers/Advisors
    Sung, Woongje; Advisor
    Shahedipour-Sandvik, Fatemeh
    Galis, Spyridon
    Pillai, Unnikrishnan Sadasivan
    Morgan, Adam
    Agarwal, Anant K
    Term and Year
    Fall 2022
    Date Published
    2022-12
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/8379
    Abstract
    The research primarily focuses on the development and fabrication of 4H-Silicon Carbide (SiC) power devices. As of today, power devices play a substantial role in high power applications such as fast-charging stations for electric vehicles, inverters for solar power, and energy storage equipment, to name a few. To minimize power loss during the operation, one of the key elements is to develop an energy-efficient power device. Although silicon (Si)-based power devices are currently being used in various high power applications, Si reached its physical limit in power loss reduction. In this aspect, wide-bandgap material, especially 4H-Silicon Carbide (SiC), became an excellent candidate to replace Si to fabricate power semiconductor devices that enable further minimization of power dissipation beyond Si. To advance the present and future low voltage (600 V) and high voltage (15 kV) power applications, the development of both low voltage and high voltage power devices are imperative. The most unique feature of a power device is the ability to withstand high voltages (> 600 V) with a voltage supporting layer, called the “drift region”. The breakdown voltage of the power device depends on the thickness and doping concentration of the drift region, as most of the voltage is supported by the depletion region formed within the drift layer. The optimization of the drift region must be performed to meet the breakdown voltage requirements based on the application while minimizing the on-state voltage drop to reduce power dissipation. When compared to the Si counterparts, SiC allows for the design of a thin, heavily doped drift region to support a specified voltage due to its superior material properties. Additionally, leakage currents generated during the off-state mode are also significantly suppressed due to two orders of magnitude lower intrinsic carrier density than that of Si. These merits of SiC become more substantial when building high voltage power devices (>3.3 kV) where resistance in the drift region dominates the overall on-resistance of the device. The details of optimizing device structures, fabrication details, and electrical characterizations of 600 V to 15 kV 4H-SiC power devices are discussed in this dissertation. The fundamental of the power device including the design of the drift layer and edge termination techniques for the power device will be discussed. To improve the low voltage application (i.e. electrical vehicles and photovoltaic converters), 600 V-rated lateral and vertical MOSFETs were developed and fabricated. From this work, the world's first high current (10 A) and high voltage (600 V) SiC lateral MOSFET was demonstrated. The fabricated lateral MOSFET was compared with the state-of-the-art vertical power MOSFET to identify the performance gaps to further enhance the electrical performances of the lateral MOSFETs. 600 V vertical MOSFETs and JBSFET (Junction-Barrier-Schottky (JBS) diode integrated MOSFET) were also developed to reduce the power loss in the system by replacing the Si-IGBTs (insulated-gate-bipolar-transistor) in the circuitry. The utilization of unipolar devices (i.e. MOSFET) is often more favorable than the bipolar devices (i.e. IGBT) due to faster switching speed and lower switching loss. On the other hand, the development of high voltage (> 6.5kV) devices are essential for high power applications such as power grids, military vehicles, to name a few. The fabrication and application of single-chip, high voltage devices are advantageous in terms of replacing many series-connected devices used to withstand high voltage in power circuits. However, research on ≥ 6.5kV-rated 4H-SiC power devices are very limited. With this motivation, 6.5 kV to 15 kV SiC JBS diodes, MOSFETs, and JBSFETs were designed and fabricated. From this study, we identified that device optimization for high voltage (> 6.5 kV) devices are different from the low voltage (< 1700V) devices due low background doping concentration of high voltage devices. Critical design considerations for fabricating 6.5 kV to 15 kV devices will be discussed. Both static and dynamic characteristics were also evaluated and compared, respectively.
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.