Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations.
dc.contributor.author | Peterson, Roseann E | |
dc.contributor.author | Kuchenbaecker, Karoline | |
dc.contributor.author | Walters, Raymond K | |
dc.contributor.author | Chen, Chia-Yen | |
dc.contributor.author | Popejoy, Alice B | |
dc.contributor.author | Periyasamy, Sathish | |
dc.contributor.author | Lam, Max | |
dc.contributor.author | Iyegbe, Conrad | |
dc.contributor.author | Strawbridge, Rona J | |
dc.contributor.author | Brick, Leslie | |
dc.contributor.author | Carey, Caitlin E | |
dc.contributor.author | Martin, Alicia R | |
dc.contributor.author | Meyers, Jacquelyn L | |
dc.contributor.author | Su, Jinni | |
dc.contributor.author | Chen, Junfang | |
dc.contributor.author | Edwards, Alexis C | |
dc.contributor.author | Kalungi, Allan | |
dc.contributor.author | Koen, Nastassja | |
dc.contributor.author | Majara, Lerato | |
dc.contributor.author | Schwarz, Emanuel | |
dc.contributor.author | Smoller, Jordan W | |
dc.contributor.author | Stahl, Eli A | |
dc.contributor.author | Sullivan, Patrick F | |
dc.contributor.author | Vassos, Evangelos | |
dc.contributor.author | Mowry, Bryan | |
dc.contributor.author | Prieto, Miguel L | |
dc.contributor.author | Cuellar-Barboza, Alfredo | |
dc.contributor.author | Bigdeli, Tim B | |
dc.contributor.author | Edenberg, Howard J | |
dc.contributor.author | Huang, Hailiang | |
dc.contributor.author | Duncan, Laramie E | |
dc.date.accessioned | 2023-02-13T20:35:17Z | |
dc.date.available | 2023-02-13T20:35:17Z | |
dc.date.issued | 2019-10-10 | |
dc.identifier.citation | Peterson RE, Kuchenbaecker K, Walters RK, Chen CY, Popejoy AB, Periyasamy S, Lam M, Iyegbe C, Strawbridge RJ, Brick L, Carey CE, Martin AR, Meyers JL, Su J, Chen J, Edwards AC, Kalungi A, Koen N, Majara L, Schwarz E, Smoller JW, Stahl EA, Sullivan PF, Vassos E, Mowry B, Prieto ML, Cuellar-Barboza A, Bigdeli TB, Edenberg HJ, Huang H, Duncan LE. Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell. 2019 Oct 17;179(3):589-603. doi: 10.1016/j.cell.2019.08.051. Epub 2019 Oct 10. PMID: 31607513; PMCID: PMC6939869. | en_US |
dc.identifier.eissn | 1097-4172 | |
dc.identifier.doi | 10.1016/j.cell.2019.08.051 | |
dc.identifier.pmid | 31607513 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12648/8361 | |
dc.description.abstract | Genome-wide association studies (GWASs) have focused primarily on populations of European descent, but it is essential that diverse populations become better represented. Increasing diversity among study participants will advance our understanding of genetic architecture in all populations and ensure that genetic research is broadly applicable. To facilitate and promote research in multi-ancestry and admixed cohorts, we outline key methodological considerations and highlight opportunities, challenges, solutions, and areas in need of development. Despite the perception that analyzing genetic data from diverse populations is difficult, it is scientifically and ethically imperative, and there is an expanding analytical toolbox to do it well. | |
dc.language.iso | en | en_US |
dc.relation.url | https://www.cell.com/cell/fulltext/S0092-8674(19)31002-5 | en_US |
dc.rights | Copyright © 2019 Elsevier Inc. All rights reserved. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | GWAS | en_US |
dc.subject | admixed populations | en_US |
dc.subject | ancestry | en_US |
dc.subject | complex disease | en_US |
dc.subject | cross-ancestry | en_US |
dc.subject | diversity | en_US |
dc.subject | population genetics | en_US |
dc.subject | psychiatry | en_US |
dc.subject | trans-ancestry | en_US |
dc.subject | trans-ethnic | en_US |
dc.title | Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. | en_US |
dc.type | Article/Review | en_US |
dc.source.journaltitle | Cell | en_US |
dc.source.volume | 179 | |
dc.source.issue | 3 | |
dc.source.beginpage | 589 | |
dc.source.endpage | 603 | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United Kingdom | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.source.country | United Kingdom | |
dc.source.country | United States | |
dc.source.country | United States | |
dc.description.version | VoR | en_US |
refterms.dateFOA | 2023-02-13T20:35:17Z | |
html.description.abstract | Genome-wide association studies (GWASs) have focused primarily on populations of European descent, but it is essential that diverse populations become better represented. Increasing diversity among study participants will advance our understanding of genetic architecture in all populations and ensure that genetic research is broadly applicable. To facilitate and promote research in multi-ancestry and admixed cohorts, we outline key methodological considerations and highlight opportunities, challenges, solutions, and areas in need of development. Despite the perception that analyzing genetic data from diverse populations is difficult, it is scientifically and ethically imperative, and there is an expanding analytical toolbox to do it well. | |
dc.description.institution | SUNY Downstate | en_US |
dc.description.department | Psychiatry and Behavioral Sciences | en_US |
dc.description.department | Institute for Genomics in Health | en_US |
dc.description.degreelevel | N/A | en_US |
dc.identifier.journal | Cell |