Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Journal title
The Journal of Open Source SoftwareDate Published
2022-03
Metadata
Show full item recordAbstract
Fisheries managers and ecologists use statistical models to estimate population-level relations and demographic rates (e.g., length-maturity curves, growth curves, and mortality rates). These relations and rates provide insight into populations and inputs for other models. For example, growth curves may vary across lakes showing fish populations differ due to management actions or underlying environmental conditions. A fisheries manager could use this information to set lake-specific harvest limits or an ecologist could use this information to test scientific hypotheses about fish populations. The above example also demonstrates how populations exist within hierarchical structures where sub-populations may be nested within a meta-population. More generally, these hierarchical structures may be both biological (e.g., different lakes or river pools) and statistical (e.g., correlated error structures). Currently, limited options exist for fitting these hierarchical models and people seeking to use them often must program their own implementations. Furthermore, many fisheries managers and researchers may not have Bayesian programming skills, but many can use interactive languages such as R. Additionally, programs such as JAGS often require long run times (e.g., hours if not days) to fit hierarchical models and programs such as Stan can be more difficult to program because it is a compiled language. We created fishStan to share hierarchical models for fisheries and ecology in an easy-to-use R package.Citation
Erickson et al., (2022). fishStan: Hierarchical Bayesian models for fisheries. Journal of Open Source Software, 7(71), 3444, https://doi.org/10.21105/joss.03444DOI
10.21105/joss.03444ae974a485f413a2113503eed53cd6c53
10.21105/joss.03444
Scopus Count
The following license files are associated with this item:
- Creative Commons