Show simple item record

dc.contributor.advisorMiddleton, Frank
dc.contributor.authorLaRocca, Daria
dc.date.accessioned2022-11-02T12:48:50Z
dc.date.available2022-11-02T12:48:50Z
dc.date.issued2022-11-01
dc.identifier.urihttp://hdl.handle.net/20.500.12648/7817
dc.description.abstractParkinson's disease (PD) is a progressive debilitating neurodegenerative disorder affecting 2% of subjects over age 65. The major motor symptoms of PD result from loss of midbrain dopamine-synthesizing neurons and include resting tremor, rigidity, slowed movements (bradykinesia), and postural instability. Although there are known genetic causes, most PD cases have undetermined etiology. Thus, there is considerable interest in identifying biomarkers of early-stage PD to develop effective intervention strategies that might modify the disease course. Studies completed in this dissertation were designed to identify and validate such biomarkers through comprehensive analysis of the oral microtranscriptome in human subjects, as well as in animal and cellular PD models. A total of 300 human subjects were recruited, including 178 with PD and 122 controls. Both groups contained subjects with comorbid or isolated conditions frequently associated with PD, including restless legs syndrome, dystonia, and essential tremor. Subjects completed questionnaires to assess risk factors, medication use, and motor and non-motor symptoms, and underwent formal neurological examination. Approximately half of the subjects also completed olfactory testing and computerized neuromotor, cognitive, and postural testing. Saliva samples were collected using a vial or swab. Levels of microRNA and microbiota were quantified using next generation sequencing. Saliva miRNA levels were also compared in mice expressing wildtype (WT) or A53T mutant copies of human alpha synuclein (SNCA), a known cause of PD. Performance of the mice was also assessed in motor and cognitive tasks during pre- and early-symptomatic stages of the model. Lastly, measurements of both extracellular miRNA and cellular mRNA, as well as oxidative stress and DNA damage, were completed in human iPSC-derived dopaminergic neurons expressing WT or A53T SNCA, combined with exposure to media or Paraquat, an environmental risk factor for PD. All PD subjects fell within the mild-moderate early stage category. Significant differences were observed for olfactory, postural, and more challenging cognitive tests. Profiling of salivary miRNAs revealed subsets highly-changed in early stage PD. The mouse and dopaminergic neuron data strongly supported the findings for two specific miRNAs - miR-103a-3p and miR-107 - and indicate a number of key cellular pathways are altered across the disease and models.en_US
dc.language.isoen_USen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectParkinson's diseaseen_US
dc.subjectneurodegenerationen_US
dc.subjectmiRNAen_US
dc.subjectmouse modelsen_US
dc.subjectexosomeen_US
dc.subjectsalivaen_US
dc.subjectRNA-sequencingen_US
dc.subjectcell cultureen_US
dc.subjectparaquaten_US
dc.subjectalpha-synucleinen_US
dc.titleThe microtranscriptome of Parkinson's disease: human and animal studiesen_US
dc.typeDissertationen_US
dc.description.versionNAen_US
dc.description.institutionUpstate Medical Universityen_US
dc.description.departmentNeuroscience and Physiologyen_US
dc.description.degreelevelPhDen_US
dc.date.semesterFall 2022en_US


Files in this item

Thumbnail
Name:
LaRoccaDissertation2022.pdf
Size:
5.605Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International