Short-term exposure to PM and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Jung, Kyung HwaTorrone, David
Lovinsky-Desir, Stephanie
Perzanowski, Matthew
Bautista, Joshua
Jezioro, Jacqueline R
Hoepner, Lori
Ross, Jamie
Perera, Frederica P
Chillrud, Steven N
Miller, Rachel L
Journal title
Respiratory researchDate Published
2017-04-19Publication Volume
18Publication Issue
1Publication Begin page
63
Metadata
Show full item recordAbstract
Background: Both short and long-term exposure to traffic-related air pollutants have been associated with asthma and reduced lung function. We hypothesized that short-term indoor exposure to fine particulate matter <2.5 μm (PM2.5) and vanadium (V) would be associated with altered buccal cell DNA methylation of targeted asthma genes and decreased lung function among urban children in a nested subcohort of African American and Dominican children. Methods: Six day integrated levels of air pollutants were measured from children's homes (age 9-14; n = 163), repeated 6 months later (n = 98). Buccal samples were collected repeatedly during visits. CpG promoter loci of asthma genes (i.e., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A), arginase 2 (ARG2)) were pyrosequenced and lung function was assessed. Results: Exposure to V, but not PM2.5, was associated with lower DNA methylation of IL4 and IFNγ. In exploratory analyses, V levels were associated with lower methylation of the proinflammatory NOS2A-CpG+5099 among asthmatic overweight or obese children but not nonasthmatics. Short-term exposure to PM2.5, but not V, appeared associated with lower lung function (i.e., reduced z-scores for forced expiratory volume in one second (FEV1, FEV1/ forced vital capacity [FEV1/FVC] and forced expiratory flow at 25-75% of FVC [FEF25-75]). Conclusions: Exposure to V was associated with altered DNA methylation of allergic and proinflammatory asthma genes implicated in air pollution related asthma. However, short-term exposure to PM2.5, but not V, appeared associated with decrements in lung function among urban children.Citation
Jung KH, Torrone D, Lovinsky-Desir S, Perzanowski M, Bautista J, Jezioro JR, Hoepner L, Ross J, Perera FP, Chillrud SN, Miller RL. Short-term exposure to PM2.5 and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children. Respir Res. 2017 Apr 19;18(1):63. doi: 10.1186/s12931-017-0550-9. PMID: 28424066; PMCID: PMC5397738.DOI
10.1186/s12931-017-0550-9ae974a485f413a2113503eed53cd6c53
10.1186/s12931-017-0550-9
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International