Show simple item record

dc.contributor.authorThomas, Nathaniel S
dc.contributor.authorBarr, Peter
dc.contributor.authorAliev, Fazil
dc.contributor.authorStephenson, Mallory
dc.contributor.authorKuo, Sally I-Chun
dc.contributor.authorChan, Grace
dc.contributor.authorDick, Danielle M
dc.contributor.authorEdenberg, Howard J
dc.contributor.authorHesselbrock, Victor
dc.contributor.authorKamarajan, Chella
dc.contributor.authorKuperman, Samuel
dc.contributor.authorSalvatore, Jessica E
dc.date.accessioned2022-09-29T15:18:09Z
dc.date.available2022-09-29T15:18:09Z
dc.date.issued2022-06-08
dc.identifier.citationThomas NS, Barr P, Aliev F, Stephenson M, Kuo SI, Chan G, Dick DM, Edenberg HJ, Hesselbrock V, Kamarajan C, Kuperman S, Salvatore JE. Principal Component Analysis Reduces Collider Bias in Polygenic Score Effect Size Estimation. Behav Genet. 2022 Sep;52(4-5):268-280. doi: 10.1007/s10519-022-10104-z. Epub 2022 Jun 8. PMID: 35674916.en_US
dc.identifier.eissn1573-3297
dc.identifier.doi10.1007/s10519-022-10104-z
dc.identifier.pmid35674916
dc.identifier.urihttp://hdl.handle.net/20.500.12648/7596
dc.description.abstractIn this study, we test principal component analysis (PCA) of measured confounders as a method to reduce collider bias in polygenic association models. We present results from simulations and application of the method in the Collaborative Study of the Genetics of Alcoholism (COGA) sample with a polygenic score for alcohol problems, DSM-5 alcohol use disorder as the target phenotype, and two collider variables: tobacco use and educational attainment. Simulation results suggest that assumptions regarding the correlation structure and availability of measured confounders are complementary, such that meeting one assumption relaxes the other. Application of the method in COGA shows that PC covariates reduce collider bias when tobacco use is used as the collider variable. Application of this method may improve PRS effect size estimation in some cases by reducing the effect of collider bias, making efficient use of data resources that are available in many studies.en_US
dc.language.isoenen_US
dc.relation.urlhttps://link.springer.com/article/10.1007/s10519-022-10104-zen_US
dc.rights© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCollider Biasen_US
dc.subjectPolygenic scoresen_US
dc.subjectPrincipal component analysisen_US
dc.titlePrincipal Component Analysis Reduces Collider Bias in Polygenic Score Effect Size Estimation.en_US
dc.typeArticle/Reviewen_US
dc.source.journaltitleBehavior geneticsen_US
dc.source.volume52
dc.source.issue4-5
dc.source.beginpage268
dc.source.endpage280
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.source.countryUnited States
dc.description.versionAMen_US
refterms.dateFOA2022-09-29T15:18:09Z
dc.description.institutionSUNY Downstateen_US
dc.description.departmentPsychiatry and Behavioral Sciencesen_US
dc.description.degreelevelN/Aen_US
dc.identifier.journalBehavior genetics


Files in this item

Thumbnail
Name:
PCA_collider_BG_R&R.pdf
Size:
835.2Kb
Format:
PDF
Description:
Manuscript
Thumbnail
Name:
PCAcollider_SupplementalTables ...
Size:
44.79Mb
Format:
Microsoft Excel
Description:
Data Table -Excel

This item appears in the following Collection(s)

Show simple item record

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Except where otherwise noted, this item's license is described as © 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.