Response of wetland vegetation to the post-1986 decrease in Lake St. Clair water levels: Seed-bank emergence and beginnings of the Phragmites australis invasion
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Wilcox, Douglas A.Journal title
Journal of Great Lakes Research 38 (2012)Date Published
2012
Metadata
Show full item recordAbstract
Water-level fluctuations are critical for maintaining the diversity and resultant habitat value of wetland plant communities in the Laurentian Great Lakes. However, activation of the seed bank can also provide an opportunity for invasive species to displace native species, as occurred when common reed, Phragmites australis, expanded across many wetlands after lake levels receded following highs in 1997. Timing of the invasion process is not clear, however, as Phragmites propagules had to be present to exploit the exposed soils. A data set from Dickinson Island on the St. Clair River delta collected in 1988–1991, 1996 during a previous lake-level decline was analyzed to document prior Phragmites growth, as well as overall seed-bank response. Aboveground biomass was determined for all plants each year in randomly placed quadrats in a 5-ha area exposed when lake levels decreased by 0.65 m from 1986 to 1988. A total of 38 taxa were identified in 1988, but the number decreased, along with biomass of many species, as canopy-dominating Typha angustifolia and Phragmites increased in later years. Although Phragmites did not expand greatly until after the decline from the 1997 high, it likely inoculated the area with viable seed during the previous low. Because post-1997 lake levels were lower than those post-1986, they exposed a greater area for Phragmites colonization from seed; lake levels also remained low for a longer time. Differences in bathymetry below the 1986 and 1997 lake-level elevations likely played a role in greater post-1997 spatial expansion of Phragmites at other sites in the Great Lakes also. The next high lake level will likely be required to displace Phragmites, but the effect will be temporary.DOI
10.1016/j.jglr.2012.02.007ae974a485f413a2113503eed53cd6c53
10.1016/j.jglr.2012.02.007
Scopus Count