Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Carter, CaymenKeyword
Long Short-Term Memory neural networkssentiment analysis
stock price prediction
LSTM model
Kaggle
Readers/Advisors
Reale, Michael J., ChairConfer, Amos, Reader
Urban, Christopher, Reader
Date Published
2022-05
Metadata
Show full item recordAbstract
This work presents multiple Long Short-Term Memory neural networks used in con- junction with sentiment analysis to predict stock prices over time. Multiple datasets and input features are used on a LSTM model to decipher which features produce the best output predictions and if there is correlation to the sentiment of posts and the rising of a stock. This project uses embedding based sentiment analysis on a dataset collected from Kaggle which includes over one million posts made on the subreddit r/wallstreetbets. This subreddit recently came under fire by the media with the shorting of Gamestop in the stock market. It was theorized that this subreddit was working as a collective to drive up the price of multiple stock, therefore hurting large corporations such as hedge funds that had large short positions on multiple stocks.