Application of Resistive Random Access Memory (RRAM) For Non-Von Neumann Computing
Name:
Final thesis Content_05.24.202 ...
Size:
4.522Mb
Format:
PDF
Description:
Final Dissertation Submission
Name:
Non_exclusive distribution ...
Size:
3.354Mb
Format:
PDF
Description:
Distribution license
Name:
Dissertation-Approval-Form_Sarah ...
Size:
601.8Kb
Format:
PDF
Description:
Dissertation Approval Form
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Rafiq, SarahKeyword
Emerging Non-Volatile Memory Technologiesvon Neumann bottleneck
hafnium oxide resistive random access memory (ReRAM)
non-von Neumann computing applications
flow-based computing
ReRAM non-volatile accumulative behavior
ReRAM
Readers/Advisors
Lloyd, James, Committee MemberLaBella, Vincent, Committee Member
Ventrice, Carl, Committee Member
Jha, Sumit K., External Committee Member
Cady, Nathaniel C., Dissertation Committee Chair
Date Published
2022-05
Metadata
Show full item recordAbstract
The movement of data between physically separated memory and processing units in conventional computing systems (the so-called von Neumann architecture) incurs significant costs in energy and latency. This is known as the von Neumann bottleneck. With the advent of the Internet of Things (IoT) and edge computing, computing systems are also becoming significantly power limited. In this work, hafnium oxide resistive random access memory (ReRAM) integrated with 65nm CMOS technology on a 300 mm wafer platform was assessed to carry out two novel non-von Neumann computing applications that processes data within memory and avoid excessive data movement. These computing applications are based on regulating the flow of sneak path currents in memory arrays to perform computation, called flow-based computing, and detecting degree of association (correlation) between binary processes in an unsupervised manner using the ReRAM non-volatile accumulative behavior, termed as temporal correlation detection. Electrical characterization of hafnium oxide ReRAM arrays was conducted for multi-level resistance states for flow-based computing, which was then investigated for two functions, approximate edge detection and XOR Boolean logic, through both experiments and simulation. The effect of device non-idealities was also evaluated. A trade-off between the flow-based output resistance ratio and the variability of flow-based outputs was found for different patterned binary resistance Roff/Ron ratios. For the second non-von Neumann application, the feasibility of ReRAM as a non-volatile candidate device was investigated with an empirical ReRAM model through simulation. Experimental ReRAM analog incremental switching data, from both SET and RESET regimes, was also evaluated on the modified temporal correlation detection algorithm, where the RESET regime resulted in better performance. The ReRAM based implementation yielded 36,000-53,000 vi times lower energy consumption than similar implementation with phase change memory for 25 binary processes, and a speed-up of computation time by 1,600-2,100 times than that of a CPU-based implementation using 1xPOWER8 CPU. 1xPOWER8 CPU is a CPU available on the IBM* Power* System S822LC system, the POWER8 system series, where the CPU was run for 1 thread. In summary, hafnium oxide ReRAM based on 65nm CMOS technology has been evaluated for two non-von Neumann computing applications, and the effect of device non-idealities has also been assessed. These ReRAM in-memory computing applications show the promising potential of ReRAM in overcoming the von-Neumann bottleneck.