Now showing items 1-20 of 65

    • Characterizing and Coding Psychiatric Diagnoses Using Electronic Health Record Data-Reply.

      Barr, Peter B; Bigdeli, Tim B; Meyers, Jacquelyn L (2022-09-14)
    • Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia, Bipolar Disorder, and Depression Among Adults in the US Veterans Affairs Health Care System.

      Bigdeli, Tim B; Voloudakis, Georgios; Barr, Peter B; Gorman, Bryan R; Genovese, Giulio; Peterson, Roseann E; Burstein, David E; Velicu, Vlad I; Li, Yuli; Gupta, Rishab; et al. (2022-09-14)
      Importance: Serious mental illnesses, including schizophrenia, bipolar disorder, and depression, are heritable, highly multifactorial disorders and major causes of disability worldwide. Objective: To benchmark the penetrance of current neuropsychiatric polygenic risk scores (PRSs) in the Veterans Health Administration health care system and to explore associations between PRS and broad categories of human disease via phenome-wide association studies. Design, setting, and participants: Extensive Veterans Health Administration's electronic health records were assessed from October 1999 to January 2021, and an embedded cohort of 9378 individuals with confirmed diagnoses of schizophrenia or bipolar 1 disorder were found. The performance of schizophrenia, bipolar disorder, and major depression PRSs were compared in participants of African or European ancestry in the Million Veteran Program (approximately 400 000 individuals), and associations between PRSs and 1650 disease categories based on ICD-9/10 billing codes were explored. Last, genomic structural equation modeling was applied to derive novel PRSs indexing common and disorder-specific genetic factors. Analysis took place from January 2021 to January 2022. Main outcomes and measures: Diagnoses based on in-person structured clinical interviews were compared with ICD-9/10 billing codes. PRSs were constructed using summary statistics from genome-wide association studies of schizophrenia, bipolar disorder, and major depression. Results: Of 707 299 enrolled study participants, 459 667 were genotyped at the time of writing; 84 806 were of broadly African ancestry (mean [SD] age, 58 [12.1] years) and 314 909 were of broadly European ancestry (mean [SD] age, 66.4 [13.5] years). Among 9378 individuals with confirmed diagnoses of schizophrenia or bipolar 1 disorder, 8962 (95.6%) were correctly identified using ICD-9/10 codes (2 or more). Among those of European ancestry, PRSs were robustly associated with having received a diagnosis of schizophrenia (odds ratio [OR], 1.81 [95% CI, 1.76-1.87]; P < 10-257) or bipolar disorder (OR, 1.42 [95% CI, 1.39-1.44]; P < 10-295). Corresponding effect sizes in participants of African ancestry were considerably smaller for schizophrenia (OR, 1.35 [95% CI, 1.29-1.42]; P < 10-38) and bipolar disorder (OR, 1.16 [95% CI, 1.11-1.12]; P < 10-10). Neuropsychiatric PRSs were associated with increased risk for a range of psychiatric and physical health problems. Conclusions and relevance: Using diagnoses confirmed by in-person structured clinical interviews and current neuropsychiatric PRSs, the validity of an electronic health records-based phenotyping approach in US veterans was demonstrated, highlighting the potential of PRSs for disentangling biological and mediated pleiotropy.
    • The glymphatic system: Current understanding and modeling.

      Bohr, Tomas; Hjorth, Poul G; Holst, Sebastian C; Hrabětová, Sabina; Kiviniemi, Vesa; Lilius, Tuomas; Lundgaard, Iben; Mardal, Kent-Andre; Martens, Erik A; Mori, Yuki; et al. (2022-08-20)
      We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
    • Investigating Health Disparities Associated With Multisystem Inflammatory Syndrome in Children After SARS-CoV-2 Infection.

      Zambrano, Laura D; Ly, Kathleen N; Link-Gelles, Ruth; Newhams, Margaret M; Akande, Manzilat; Wu, Michael J; Feldstein, Leora R; Tarquinio, Keiko M; Sahni, Leila C; Riggs, Becky J; et al. (2022-09-07)
      Background: Multisystem inflammatory syndrome in children (MIS-C) is a postinfectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related complication that has disproportionately affected racial/ethnic minority children. We conducted a pilot study to investigate risk factors for MIS-C aiming to understand MIS-C disparities. Methods: This case-control study included MIS-C cases and SARS-CoV-2-positive outpatient controls aged less than 18 years frequency-matched 4:1 to cases by age group and site. Patients hospitalized with MIS-C were admitted between March 16 and October 2, 2020, across 17 pediatric hospitals. We evaluated race, ethnicity, social vulnerability index (SVI), insurance status, weight-for-age and underlying medical conditions as risk factors using mixed effects multivariable logistic regression. Results: We compared 241 MIS-C cases to 817 outpatient SARS-CoV-2-positive at-risk controls. Cases and controls had similar sex, age and U.S. census region distribution. MIS-C patients were more frequently previously healthy, non-Hispanic Black, residing in higher SVI areas, and in the 95th percentile or higher for weight-for-age. In the multivariable analysis, the likelihood of MIS-C was higher among non-Hispanic Black children [adjusted odds ratio (aOR): 2.07; 95% CI: 1.23-3.48]. Additionally, SVI in the 2nd and 3rd tertiles (aOR: 1.88; 95% CI: 1.18-2.97 and aOR: 2.03; 95% CI: 1.19-3.47, respectively) were independent factors along with being previously healthy (aOR: 1.64; 95% CI: 1.18-2.28). Conclusions: In this study, non-Hispanic Black children were more likely to develop MIS-C after adjustment for sociodemographic factors, underlying medical conditions, and weight-for-age. Investigation of the potential contribution of immunologic, environmental, and other factors is warranted.
    • In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response.

      Sahu, Aditi; Kose, Kivanc; Kraehenbuehl, Lukas; Byers, Candice; Holland, Aliya; Tembo, Teguru; Santella, Anthony; Alfonso, Anabel; Li, Madison; Cordova, Miguel; et al. (2022-09-09)
      Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into 'hot' and 'cold' is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response. Here, we report dynamic cellular-level TiME phenotyping in vivo that combines inflammation profiles with vascular features through non-invasive reflectance confocal microscopic imaging. In skin cancer patients, we demonstrate three main TiME phenotypes that correlate with gene and protein expression, and response to toll-like receptor agonist immune-therapy. Notably, phenotypes with high inflammation associate with immunostimulatory signatures and those with high vasculature with angiogenic and endothelial anergy signatures. Moreover, phenotypes with high inflammation and low vasculature demonstrate the best treatment response. This non-invasive in vivo phenotyping approach integrating dynamic vasculature with inflammation serves as a reliable predictor of response to topical immune-therapy in patients.
    • Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation.

      Kummerlowe, Conner; Mwakamui, Simutanyi; Hughes, Travis K; Mulugeta, Nolawit; Mudenda, Victor; Besa, Ellen; Zyambo, Kanekwa; Shay, Jessica E S; Fleming, Ira; Vukovic, Marko; et al. (2022-08-31)
      Environmental enteropathy (EE) is a subclinical condition of the small intestine that is highly prevalent in low- and middle-income countries. It is thought to be a key contributing factor to childhood malnutrition, growth stunting, and diminished oral vaccine responses. Although EE has been shown to be the by-product of a recurrent enteric infection, its full pathophysiology remains unclear. Here, we mapped the cellular and molecular correlates of EE by performing high-throughput, single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE in Lusaka, Zambia (eight HIV-negative and three HIV-positive), six adults without EE in Boston, United States, and two adults in Durban, South Africa, which we complemented with published data from three additional individuals from the same clinical site. We analyzed previously defined bulk-transcriptomic signatures of reduced villus height and decreased microbial translocation in EE and showed that these signatures may be driven by an increased abundance of surface mucosal cells-a gastric-like subset previously implicated in epithelial repair in the gastrointestinal tract. In addition, we determined cell subsets whose fractional abundances associate with EE severity, small intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with those from three control cohorts, we identified dysregulated WNT and MAPK signaling in the EE epithelium and increased proinflammatory cytokine gene expression in a T cell subset highly expressing a transcriptional signature of tissue-resident memory cells in the EE cohort. Together, our work elucidates epithelial and immune correlates of EE and nominates cellular and molecular targets for intervention.
    • Detection of mitochondrial insertions in the nucleus (NuMts) of Pleistocene and modern muskoxen.

      Kolokotronis, Sergios-Orestis; MacPhee, Ross D E; Greenwood, Alex D (2007-04-27)
      Background: Nuclear insertions of mitochondrial sequences (NuMts) have been identified in a wide variety of organisms. Trafficking of genetic material from the mitochondria to the nucleus has occurred frequently during mammalian evolution and can lead to the production of a large pool of sequences with varying degrees of homology to organellar mitochondrial DNA (mtDNA) sequences. This presents both opportunities and challenges for forensics, population genetics, evolutionary genetics, conservation biology and the study of DNA from ancient samples. Here we present a case in which difficulties in ascertaining the organellar mtDNA sequence from modern samples hindered their comparison to ancient DNA sequences. Results: We obtained mitochondrial hypervariable region (HVR) sequences from six ancient samples of tundra muskox (Ovibos moschatus) that were reproducible but distinct from modern muskox sequences reported previously. Using the same PCR primers applied to the ancient specimens and the primers used to generate the modern muskox DNA sequences in a previous study, we failed to definitively identify the organellar sequence from the two modern muskox samples tested. Instead of anticipated sequence homogeneity, we obtained multiple unique sequences from both hair and blood of one modern specimen. Sequencing individual clones of a >1 kb PCR fragment from modern samples did not alleviate the problem as there was not a consistent match across the entire length of the sequences to Ovibos when compared to sequences in GenBank. Conclusion: In specific taxa, due to nuclear insertions some regions of the mitochondrial genome may not be useful for the characterization of modern or ancient DNA.
    • Elevated substitution rates estimated from ancient DNA sequences.

      Ho, Simon Y W; Kolokotronis, Sergios-Orestis; Allaby, Robin G
      Ancient DNA sequences are able to offer valuable insights into molecular evolutionary processes, which are not directly accessible via modern DNA. They are particularly suitable for the estimation of substitution rates because their ages provide calibrating information in phylogenetic analyses, circumventing the difficult task of choosing independent calibration points. The substitution rates obtained from such datasets have typically been high, falling between the rates estimated from pedigrees and species phylogenies. Many of these estimates have been made using a Bayesian phylogenetic method that explicitly accommodates heterochronous data. Stimulated by recent criticism of this method, we present a comprehensive simulation study that validates its performance. For datasets of moderate size, it produces accurate estimates of rates, while appearing robust to assumptions about demographic history. We then analyse a large collection of 749 ancient and 727 modern DNA sequences from 19 species of animals, plants and bacteria. Our new estimates confirm that the substitution rates estimated from ancient DNA sequences are elevated above long-term phylogenetic levels.
    • Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease.

      Wyatt, Kelly B; Campos, Paula F; Gilbert, M Thomas P; Kolokotronis, Sergios-Orestis; Hynes, Wayne H; DeSalle, Rob; Ball, Stanley J; Daszak, Peter; MacPhee, Ross D E; Greenwood, Alex D (2008-11-05)
      It is now widely accepted that novel infectious disease can be a leading cause of serious population decline and even outright extinction in some invertebrate and vertebrate groups (e.g., amphibians). In the case of mammals, however, there are still no well-corroborated instances of such diseases having caused or significantly contributed to the complete collapse of species. A case in point is the extinction of the endemic Christmas Island rat (Rattus macleari): although it has been argued that its disappearance ca. AD 1900 may have been partly or wholly caused by a pathogenic trypanosome carried by fleas hosted on recently-introduced black rats (Rattus rattus), no decisive evidence for this scenario has ever been adduced. Using ancient DNA methods on samples from museum specimens of these rodents collected during the extinction window (AD 1888-1908), we were able to resolve unambiguously sequence evidence of murid trypanosomes in both endemic and invasive rats. Importantly, endemic rats collected prior to the introduction of black rats were devoid of trypanosome signal. Hybridization between endemic and black rats was also previously hypothesized, but we found no evidence of this in examined specimens, and conclude that hybridization cannot account for the disappearance of the endemic species. This is the first molecular evidence for a pathogen emerging in a naïve mammal species immediately prior to its final collapse.
    • Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary

      Krause, Johannes; Unger, Tina; Noçon, Aline; Malaspinas, Anna-Sapfo; Kolokotronis, Sergios-Orestis; Stiller, Mathias; Soibelzon, Leopoldo; Spriggs, Helen; Dear, Paul H; Briggs, Adrian W; et al. (Springer Science and Business Media LLC, 2008-07-28)
      Background: Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods. Results: We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus). The mitogenomic data yield a well-resolved topology for ursids, with the sloth bear at the basal position within the genus Ursus. The sun bear is the sister taxon to both the American and Asian black bears, and this clade is the sister clade of cave bear, brown bear and polar bear confirming a recent study on bear mitochondrial genomes. Conclusion: Sequences from extinct bears represent the third and fourth Pleistocene species for which complete mitochondrial genomes have been sequenced. Moreover, the cave bear specimen demonstrates that mitogenomic studies can be applied to Pleistocene fossils that have not been preserved in permafrost, and therefore have a broad application within ancient DNA research. Molecular dating of the mtDNA divergence times suggests a rapid radiation of bears in both the Old and New Worlds around 5 million years ago, at the Miocene-Pliocene boundary. This coincides with major global changes, such as the Messinian crisis and the first opening of the Bering Strait, and suggests a global influence of such events on species radiations.
    • Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis.

      Schierwater, Bernd; Eitel, Michael; Jakob, Wolfgang; Osigus, Hans-Jürgen; Hadrys, Heike; Dellaporta, Stephen L; Kolokotronis, Sergios-Orestis; DeSalle, Rob
      For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom) and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1) provide evidence that Placozoa are basal relative to all other diploblast phyla and (2) spark a modernized "urmetazoon" hypothesis.
    • The impact of outgroup choice and missing data on major seed plant phylogenetics using genome-wide EST data.

      de la Torre-Bárcena, Jose Eduardo; Kolokotronis, Sergios-Orestis; Lee, Ernest K; Stevenson, Dennis Wm; Brenner, Eric D; Katari, Manpreet S; Coruzzi, Gloria M; DeSalle, Rob (2009-06-02)
      Background: Genome level analyses have enhanced our view of phylogenetics in many areas of the tree of life. With the production of whole genome DNA sequences of hundreds of organisms and large-scale EST databases a large number of candidate genes for inclusion into phylogenetic analysis have become available. In this work, we exploit the burgeoning genomic data being generated for plant genomes to address one of the more important plant phylogenetic questions concerning the hierarchical relationships of the several major seed plant lineages (angiosperms, Cycadales, Gingkoales, Gnetales, and Coniferales), which continues to be a work in progress, despite numerous studies using single, few or several genes and morphology datasets. Although most recent studies support the notion that gymnosperms and angiosperms are monophyletic and sister groups, they differ on the topological arrangements within each major group. Methodology: We exploited the EST database to construct a supermatrix of DNA sequences (over 1,200 concatenated orthologous gene partitions for 17 taxa) to examine non-flowering seed plant relationships. This analysis employed programs that offer rapid and robust orthology determination of novel, short sequences from plant ESTs based on reference seed plant genomes. Our phylogenetic analysis retrieved an unbiased (with respect to gene choice), well-resolved and highly supported phylogenetic hypothesis that was robust to various outgroup combinations. Conclusions: We evaluated character support and the relative contribution of numerous variables (e.g. gene number, missing data, partitioning schemes, taxon sampling and outgroup choice) on tree topology, stability and support metrics. Our results indicate that while missing characters and order of addition of genes to an analysis do not influence branch support, inadequate taxon sampling and limited choice of outgroup(s) can lead to spurious inference of phylogeny when dealing with phylogenomic scale data sets. As expected, support and resolution increases significantly as more informative characters are added, until reaching a threshold, beyond which support metrics stabilize, and the effect of adding conflicting characters is minimized.
    • The Diploblast-Bilateria Sister hypothesis: parallel revolution of a nervous systems may have been a simple step.

      Schierwater, Bernd; Kolokotronis, Sergios-Orestis; Eitel, Michael; DeSalle, Rob
      For many familiar with metazoan relationships and body plans, the hypothesis of a sister group relationship between Diploblasta and Bilateria1 comes as a surprise. One of the consequences of this hypothesis-the independent evolution of a nervous system in Coelenterata and Bilateria-seems highly unlikely to many. However, to a small number of scientists working on Metazoa, the parallel evolution of the nervous system is not surprising at all and rather a confirmation of old morphological and new genetic knowledge.2-4 The controversial hypothesis that the Diploblasta and Bilateria are sister taxa is, therefore, tantamount to reconciling the parallel evolution of the nervous system in Coelenterata and Bilateria. In this addendum to Schierwater et al.1 we discuss two aspects critical to the controversy. First we discuss the strength of the inference of the proposed sister relationship of Diploblasta and Bilateria and second we discuss the implications for the evolution of nerve cells and nervous systems.
    • Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth

      Roca, Alfred L; Ishida, Yasuko; Nikolaidis, Nikolas; Kolokotronis, Sergios-Orestis; Fratpietro, Stephen; Stewardson, Kristin; Hensley, Shannon; Tisdale, Michele; Boeskorov, Gennady; Greenwood, Alex D (Springer Science and Business Media LLC, 2009)
      Background: Like humans, the living elephants are unusual among mammals in being sparsely covered with hair. Relative to extant elephants, the extinct woolly mammoth, Mammuthus primigenius, had a dense hair cover and extremely long hair, which likely were adaptations to its subarctic habitat. The fibroblast growth factor 5 (FGF5) gene affects hair length in a diverse set of mammalian species. Mutations in FGF5 lead to recessive long hair phenotypes in mice, dogs, and cats; and the gene has been implicated in hair length variation in rabbits. Thus, FGF5 represents a leading candidate gene for the phenotypic differences in hair length notable between extant elephants and the woolly mammoth. We therefore sequenced the three exons (except for the 3' UTR) and a portion of the promoter of FGF5 from the living elephantid species (Asian, African savanna and African forest elephants) and, using protocols for ancient DNA, from a woolly mammoth. Results: Between the extant elephants and the mammoth, two single base substitutions were observed in FGF5, neither of which alters the amino acid sequence. Modeling of the protein structure suggests that the elephantid proteins fold similarly to the human FGF5 protein. Bioinformatics analyses and DNA sequencing of another locus that has been implicated in hair cover in humans, type I hair keratin pseudogene (KRTHAP1), also yielded negative results. Interestingly, KRTHAP1 is a pseudogene in elephantids as in humans (although fully functional in non-human primates). Conclusion: The data suggest that the coding sequence of the FGF5 gene is not the critical determinant of hair length differences among elephantids. The results are discussed in the context of hairlessness among mammals and in terms of the potential impact of large body size, subarctic conditions, and an aquatic ancestor on hair cover in the Proboscidea.
    • The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

      Lowenstein, Jacob H.; Amato, George; Kolokotronis, Sergios-Orestis (Public Library of Science (PLoS), 2009-11-18)
      Background: The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. Methodology/principal findings: Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of "white tuna" were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. Conclusions/significance: The Convention on International Trade Endangered Species (CITES) requires that listed species must be identifiable in trade. This research fulfills this requirement for tuna, and supports the nomination of northern bluefin tuna for CITES listing in 2010.
    • Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage.

      Polani, Sagi; Roca, Alfred L; Rosensteel, Bryan B; Kolokotronis, Sergios-Orestis; Bar-Gal, Gila Kahila (2010-07-07)
      Endogenous feline leukemia viruses (enFeLVs) occur in the germ lines of the domestic cat and related wild species (genus Felis). We sequenced the long terminal repeats and part of the env region of enFeLVs in domestic cats and five wild species. A total of 305 enFeLV sequences were generated across 17 individuals, demonstrating considerable diversity within two major clades. Distinct proliferations of enFeLVs occurred before and after the black-footed cat diverged from the other species. Diversity of enFeLVs was limited for the sand cat and jungle cat suggesting that proliferation of enFeLVs occurred within these species after they diverged. Relationships among enFeLVs were congruent with host species relationships except for the jungle cat, which carried only enFeLVs from a lineage that recently invaded the germline (enFeLV-AGTT). Comparison of wildcat and domestic cat enFeLVs indicated that a distinctive germ line invasion of enFeLVs has not occurred since the cat was domesticated.
    • Budget Justice: Investing in the Health of New York City's Ethnoracially Minoritized LGBTQ+ Students in the Wake of COVID-19.

      English, Devin; Owens, E F; Vaughan, Eric; Rose, Bryson; Thompson, Azure B; Garretson, Marné; Viswanath, Aishwarya L; Lopez, Felix Gabriel (2022-08-29)
    • Sugar is not always sweet: exploring the relationship between hyperglycemia and COVID-19 in a predominantly African American population.

      Skwiersky, Samara; Rosengarten, Sabrina; Meisel, Talia; Macaluso, Francesca; Chang, Megan; Thomson, Alastair; Da Silva, Brandon; Oommen, Alvin; Salvani, Jerome; Banerji, Mary Ann
      Introduction: The purpose of this study is to examine the effect of admission glucose in patients hospitalized with COVID-19 with and without diabetes mellitus in a largely African American cohort. Design and methods: This study included 708 adults (89% non-Hispanic Black) admitted with COVID-19 to an urban hospital between 1 March and 15 May 2020. Patients with diabetes were compared with those without and were stratified based on admission glucose of 140 and 180 mg/dL. Adjusted ORs were calculated for outcomes of mortality, intubation, intensive care unit (ICU) admission, acute kidney injury (AKI), and length of stay based on admission glucose levels. Results: Patients with diabetes with admission glucose >140 mg/dL (vs <140 g/dL) had 2.4-fold increased odds of intubation (95% CI 1.2 to 4.6) and 2.1-fold increased odds of ICU admission (95% CI 1.0 to 4.3). Patients with diabetes with admission glucose >180 mg/dL (vs <180 g/dL) had a 1.9-fold increased mortality (95% CI 1.2 to 3.1). Patients without diabetes with admission glucose >140 mg/dL had a 2.3-fold increased mortality (95% CI 1.3 to 4.3), 2.7-fold increased odds of ICU admission (95% CI 1.3 to 5.4), 1.9-fold increased odds of intubation (95% CI 1.0 to 3.7) and 2.2-fold odds of AKI (95% CI 1.1 to 3.8). Patients without diabetes with glucose >180 mg/dL had 4.4-fold increased odds of mortality (95% CI 1.9 to 10.4), 2.7-fold increased odds of intubation (95% CI 1.2 to 5.8) and 3-fold increased odds of ICU admission (95% CI 1.3 to 6.6). Conclusion: Our results show hyperglycemia portends worse outcomes in patients with COVID-19 with and without diabetes. While our study was limited by its retrospective design, our findings suggest that patients presenting with hyperglycemia require closer observation and more aggressive therapies. Keywords: African Americans; COVID-19; diabetes mellitus, type 2; hyperglycemia.
    • Update on the Efficacy and Safety Profile of Voclosporin: An Integrated Analysis of Clinical Trials in Lupus Nephritis

      Arriens, Cristina; Teng, Y K Onno; Ginzler, Ellen M; Parikh, Samir V; Askanase, Anca D; Saxena, Amit; Gibson, Keisha; Caster, Dawn J; Atsumi, Tatsuya; Lisk, Laura; et al. (Wiley, 2022-08-30)
      Objectives: This integrated analysis evaluates the efficacy and safety of voclosporin, a novel calcineurin inhibitor, at 23.7 mg twice daily in combination with mycophenolate mofetil (MMF) and oral glucocorticoids in lupus nephritis (LN) using pooled data from two large phase 2 and phase 3 clinical trials. The purpose was to expand the pool of patients for safety analyses and to increase power for efficacy analyses in patient subpopulations. Methods: AURA-LV (phase 2) and AURORA 1 (phase 3) were randomized, placebo-controlled, double-blind trials with similar designs and endpoints comparing voclosporin to control in combination with MMF and oral glucocorticoids for the treatment of LN. The primary efficacy outcome of the integrated analysis was complete renal response (CRR) at approximately 1 year (Week 48 data from AURA-LV and Week 52 from AURORA 1). Safety was assessed throughout the trials. Results: Overall, 534 patients (voclosporin 268, control 266) were included in the integrated analysis. Significantly more patients achieved a CRR at 1 year in the voclosporin than control group (43.7% vs. 23.3%, OR 2.76; 95% CI 1.88, 4.05 p<0.0001). The incidence of adverse events (AEs) was similar; 91.4% voclosporin and 87.2% control. Most AEs were mild to moderate in severity; the most commonly reported AEs were classified as infections and infestations (62.2% voclosporin, 54.9% control) and gastrointestinal disorders (45.3% voclosporin, 35.3% placebo). No new or unexpected safety signals were detected. Conclusions: This integrated analysis demonstrates the efficacy and safety of voclosporin in the treatment of LN across the diverse racial and ethnic groups studied. This article is protected by copyright. All rights reserved.
    • DNA barcodes reveal species-specific mercury levels in tuna sushi that pose a health risk to consumers

      Lowenstein, Jacob H.; Burger, Joanna; Jeitner, Christian W.; Amato, George; Kolokotronis, Sergios-Orestis; Gochfeld, Michael (The Royal Society, 2010-04-21)
      Excessive ingestion of mercury--a health hazard associated with consuming predatory fishes--damages neurological, sensory-motor and cardiovascular functioning. The mercury levels found in Bigeye Tuna (Thunnus obesus) and bluefin tuna species (Thunnus maccoyii, Thunnus orientalis, and Thunnus thynnus), exceed or approach levels permissible by Canada, the European Union, Japan, the US, and the World Health Organization. We used DNA barcodes to identify tuna sushi samples analysed for mercury and demonstrate that the ability to identify cryptic samples in the market place allows regulatory agencies to more accurately measure the risk faced by fish consumers and enact policies that better safeguard their health.