Show simple item record

dc.contributor.authorCeniceros, Jose
dc.contributor.authorChurchill, Indu R.
dc.contributor.authorElhamdadi, Mohamed
dc.date.accessioned2022-03-09T13:33:34Z
dc.date.available2022-03-09T13:33:34Z
dc.date.issued2021-09-24
dc.identifier.citationCeniceros, J., Churchill, I., & Elhamdadi, M. (2021). Singquandle shadows and singular knot invariants. Canadian Mathematical Bulletin, 1-18. doi:10.4153/S0008439521000837en_US
dc.identifier.issn0008-4395
dc.identifier.eissn1496-4287
dc.identifier.doi10.4153/s0008439521000837
dc.identifier.piiS0008439521000837
dc.identifier.urihttp://hdl.handle.net/20.500.12648/7103
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.4153/S0008439521000837.en_US
dc.description.abstractWe introduce shadow structures for singular knot theory. Precisely, we define two invari- ants of singular knots and links. First, we introduce a notion of action of a singquandle on a set to define a shadow counting invariant of singular links which generalize the classical shadow colorings of knots by quandles. We then define a shadow polynomial invariant for shadow structures. Lastly, we enhance the shadow counting invariant by combining both the shadow counting invariant and the shadow polynomial invariant. Explicit examples of computations are given.en_US
dc.language.isoenen_US
dc.publisherCanadian Mathematical Societyen_US
dc.relation.urlhttps://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/abs/singquandle-shadows-and-singular-knot-invariants/9734175886AF943E8C83498053DEC49Den_US
dc.rights© Canadian Mathematical Society 2021
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://www.cambridge.org/core/terms
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectGeneral Mathematicsen_US
dc.subjectQuandle polynomialen_US
dc.subjectsingular knots and linksen_US
dc.subjectsingquandle polynomialen_US
dc.titleSingquandle shadows and singular knot invariantsen_US
dc.typeArticle/Reviewen_US
dc.source.journaltitleCanadian Mathematical Bulletinen_US
dc.source.beginpage1
dc.source.endpage18
dc.description.versionAMen_US
refterms.dateFOA2022-03-09T13:33:35Z
dc.description.institutionSUNY Oswegoen_US
dc.description.departmentMathematicsen_US
dc.description.degreelevelN/Aen_US


Files in this item

Thumbnail
Name:
Sinquandles.pdf
Size:
670.5Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record