• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Oneonta
    • SUNY Oneonta Events
    • Life of the Mind
    • 2021 Life of the Mind
    • View Item
    •   Home
    • University Colleges
    • SUNY Oneonta
    • SUNY Oneonta Events
    • Life of the Mind
    • 2021 Life of the Mind
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Immune-Mediated Repair and Regeneration of the Nervous System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Watanabe et al (1).jpg
    Size:
    9.113Mb
    Format:
    JPEG image
    Description:
    Poster
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Duscher, Kristen
    Chumpitazi, Christina
    Watanabe, Junryo
    Date Published
    2021
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/7095
    Abstract
    All animals have the ability to repair damaged or diseased tissues. The degree to which regeneration can occur can vary from some invertebrates and vertebrates regenerating entire limbs, to mammals which have a very restricted regenerative capacity. While damages to muscle, peripheral nerves, and, to a limited extent, liver initiates regenerative programs to restore function, the central nervous system (CNS) healing is largely incomplete. Rapid and efficient clearance of cellular debris is necessary for tissue regeneration to occur. Myelin debris can be found in the white matter tracts years after an injury to the CNS in both humans and primates. Myelin is a membrane outgrowth of glial cells that ensheath axons purpose of which is to allow fast saltatory conduction of action potential along the axon. Myelin sheath also has within it many proteins that are inhibitory for axon growth, presumably to prevent errant axon sprouting. The prolonged presence of myelin-associated inhibitors of axon regeneration is thought to be a major contributor to the failure of recovery after injury to the CNS. Myelin in the peripheral nervous system (PNS) also contains inhibitors of axon regeneration. In stark contrast to the CNS, injury to the PNS results in rapid clearance of myelin thereby making the environment permissive for axon regeneration. It has been demonstrated that endogenous antibodies are required for rapid and robust clearance of myelin debris after injury to the PNS. Endogenous antibodies enter the site of injury and bind myelin debris which recruits macrophages to rapidly phagocytose the debris. It was hypothesized that Th2 activated (alternatively activated) macrophages (or M2 macrophages) are playing a critical role in the clearance of myelin and other apoptotic debris in PNS injury. Perhaps, then, this might be another explanation why the PNS recovers and the CNS fails to recover after injury. This would have significant implications for people who suffer from spinal cord injuries.
    Collections
    School of Sciences - Scholarly and Creative Works
    SUNY Oneonta Scholarly and Creative Works
    2021 Life of the Mind

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.