• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    sxRNA Switches: Hypothesis Through Automated Design Via a Genetic Algorithm Approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    doyle_dissertation_final_2022.pdf
    Size:
    2.779Mb
    Format:
    PDF
    Description:
    Final Dissertation Submission
    Download
    Thumbnail
    Name:
    distribution_license.pdf
    Size:
    1.149Mb
    Format:
    PDF
    Description:
    Distribution license
    Download
    Thumbnail
    Name:
    dissertation_approval_doyle_fu ...
    Size:
    521.0Kb
    Format:
    PDF
    Description:
    Dissertation Approval Form
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Doyle, Francis J., II
    Keyword
    Ribonucleic Acid (RNA)
    Structurally interacting RNA (sxRNA)
    molecular switch technology
    Date Published
    2021-12
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/7067
    Abstract
    The following document is meant to represent an overview of my work on structurally interacting RNA (sxRNA), which has already resulted in three publications with another two in preparation. Where appropriate, some text and data from these publications have been reproduced here. Ribonucleic Acid (RNA) is one of the fundamental macromolecules present in living systems. It can be found in all cells as varying length polymer chains composed of four primary bases (adenine, cytosine, guanine, uracil) capable of numerous modifications. Though generally characterized as an information carrier, RNA is a versatile molecule that exhibits both intra and inter-strand base pairing to form complex structures. Similar to protein, the particular shape of an RNA structure in combination with some degree of sequence specificity, can dictate its function (RNA binding protein recognition sites, ribozyme activity, aptameric affinity, etc.). Structurally interacting RNA (sxRNA) is a molecular switch technology that exploits predictable intermolecular RNA base pairing to form an otherwise absent functional structure in one RNA strand when it interacts with a specific, targeted second strand. Originally proposed as a potential regulatory mechanism in natural systems, we used characteristics of predicted pairings in that context to engineer purely synthetic sxRNA switches that have been successfully tested. There are many non-coding RNAs associated with pathological conditions, the ability to use these as triggers for sxRNA opens the door to potential applications ranging from diagnostics to therapeutics. Furthermore, other prospective triggers (including those synthetically designed) may allow use of the technology as a molecular tool for a variety of purposes including as an alternative to antibiotic selection in cell line development. The typical trigger sequences targeted by sxRNA switches are at least 20 bases in length. Combinatorial options with regard to structure positioning and base composition produce an enormous number of potential sxRNA sequences for any given target. Exhaustively examining these for feasible candidates (i.e., analyzing predicted interactions with unintended targets) is computationally impossible with current systems. Evolutionary computing is a subfield of artificial intelligence (AI) that has been inspired by biology. Genetic algorithms are a type of evolutionary algorithm and apply operators (such as recombination and mutation) to find candidate solutions to an optimization problem. The presented dissertation will describe the original sxRNA research as well as the development and testing of a genetic algorithm that automates the production of new sxRNA switch candidates. This algorithm takes into consideration factors that were previously impossible to account for in manual designs.
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.