Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Nesheiwat, IssaKeyword
Research Subject Categories::TECHNOLOGY::Electrical engineering, electronics and photonics::Electrical engineering3D Printing
Antennas (Electronics)
Microstrip antennas
Strip transmission lines
Dielectrics
Engineering
Date Published
2021-09
Metadata
Show full item recordAbstract
With the demand for increasing frequencies in today’s communications systems, compact integrated circuits are challenging to achieve. Compact filters have typically been realized by modifying the circuit design including using LC resonators, defective ground structures, and adjusting the length ratios of resonators. Heterogenous substrates with controlled regions of dielectric loading offer a new design approach when it comes to manufacturing an RF component. In this thesis, additive manufacturing is used to selectively place low-K and high-K dielectric materials to achieve a compact form factor, improved bandwidth, and higher suppression in re-entry modes. First, microstrip coupled strip lines are simulated to model the basic coupling effects of loading a substrate. Next, three 2.45GHz parallel coupled bandpass microstrip filters are designed with differing substrates: low-K, high-K and high-K loaded to analyze the impact of loading within the substrate. The filter substrates are manufactured using a dual-extrusion FDM 3-D printer to combine both dielectrics, low-K ABS, and high-K PrePerm ABS1000, into a single heterogeneous substrate. Compared to the low-K dielectric alternative, the high-K loaded filter demonstrated a 30.8% decrease in length, while maintaining similar bandwidth and suppression of re-entry modes. Compared to the high-K filter, the high-K loaded filter showed a 9.4dB reduction in re-entry mode suppression, while maintaining similar footprint size.Accessibility Statement
If this SOAR repository item is not accessible to you (e.g. able to be used in the context of a disability), please email libraryaccessibility@newpaltz.eduCollections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International