• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Senior Honors Theses
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Senior Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular Solvation in Phosphonium Ionic Liquids

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    honors/36/fulltext (1).pdf
    Size:
    475.2Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Barra, Kathleen M.
    Keyword
    Brockport Honors Program
    Coumarin 153 (C153)
    Ionic Liquid
    Pil-C1
    Date Published
    2011-05-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/6782
    Abstract
    The goal of this research is to understand the solvation dynamics of coumarin 153 (C153) in an environmentally-friendly room temperature phosphonium ionic liquid (RTPIL) solvent. With virtually no vapor pressure, ILs are attracting attention as potential “green” replacements for conventional volatile organic solvents. ILs are also known for chemical stability, non-flammability and recycling potential. C153 is a prototypical fluorescent molecule known for its spectral sensitivity when in solution making it ideal for these studies. Neat trihexyltetradecyl phosphonium chloride (PIL-Cl) and methanol (MeOH) solvents were used to form an array of PIL-Cl mixtures spanning the complete range of mol fraction, in which C153 was dissolved. Solvation of C153 was determined using steady-state and time-resolved fluorescence spectroscopy. The C153 steady-state data shows a systematic blue shift as PIL-Cl is added to solution. The system is at net higher energy at high mol fraction PIL-Cl implying that C153/PIL-Cl interactions are less favorable compared to C153/MeOH. The solute emission intensity is quenched most effectively at a mol fraction of ~0.03 PIL-Cl suggesting that the solvent-solute interactions are most unique in this range of mol fraction. Similarly, the lifetime data show a minimum value at ~0.03 mol fraction PIL-Cl, also implying quenching of the probe at this relative solution composition. C153 is better solvated, more relaxed, at MeOH-rich mol fractions. Solvation dynamics are characterized by time-resolved Stokes shift measurements. The time-resolved center of gravity and associated solvation correlation function, C(t), show that solvation of C153 occurs at a faster rate in solutions of lower mol fraction PIL-Cl. The solvation times correlate to solvent viscosity. PILs showed slower solvation due to much larger viscosities than MeOH.
    Collections
    Senior Honors Theses

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.