• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Senior Honors Theses
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Senior Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Significance of the Nuclear Gene RAD54 in Mitochondrial Genome Stability of Saccharomyces cerevisiae

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    honors/185/fulltext (1).pdf
    Size:
    1.176Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Stoj, Melissa
    Keyword
    Senior Honors Thesis
    Biology
    Saccharomyces Cerevisiae
    Mitochondrial Research
    Rad54
    Date Published
    2017-05-04
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/6664
    Abstract
    Mitochondria are essential organelles in eukaryotic organisms that synthesize the energy-providing molecule, ATP, through the process of oxidative phosphorylation. As explained by the endosymbiotic theory, mitochondria contain mitochondrial DNA (mtDNA), distinct from nuclear DNA (nDNA). When mitochondrial function is impaired, and mtDNA stability is compromised, detrimental neuromuscular and neurodegenerative disorders such as Mitochondrial Encephalomyopathy, Lactic acidosis and Stroke-like episodes (MELAS) and Leber’s Hereditary Optic Neuropathy (LHON) have the potential to occur. The purpose of this study was to determine the role of the nuclear gene RAD54 in maintaining mtDNA stability in the budding yeast, Saccharomyces cerevisiae. Although the role of Rad54p in maintaining nDNA stability is understood, its impact on mtDNA stability is relatively unknown. RAD54 is a member of the RAD52 epistasis group, coding for a protein vital to the initial steps of homologous recombination and double-stranded break (DSB) repair. Given that members of the RAD52 epistasis group have been shown to contribute to homologous recombination and DSB repair in mtDNA of S. cerevisiae, we hypothesized that loss-of-function RAD54 would decrease the rate at which homologous recombination in mtDNA occurred (Stein, Kalifa & Sia, 2015). A phenotypic respiration loss assay was performed in a rad54? strain to determine the frequency of spontaneous mutations in mtDNA that blocked the oxidative phosphorylation process. The mutant strain demonstrated a 1.56-fold decrease in spontaneous respiration loss when compared to wild type (p-value = 0.0574). Interestingly, previous research has demonstrated that the nature of these spontaneous mutations is due to large deletions in the mtDNA. To investigate the role of Rad54p in preventing these deletions from occurring, a direct repeat-mediated deletion (DRMD) assay was performed. The DRMD assay demonstrated a significant 3.23-fold increase in nDNA homologous recombination events (p-value = 0.0158) and a statistically insignificant 1.08-fold increase in mtDNA homologous recombination events (p-value = 0.8741) between rad54? and wild type strains. Given the present findings of this study, it appears the nuclear gene RAD54 does not play a significant role in maintaining mtDNA stability in respiration loss or DRMD assays.
    Collections
    Senior Honors Theses

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.