• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Environmental Science and Ecology Theses
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Environmental Science and Ecology Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structure and Phenotypic Analysis of Notch Mutations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    env_theses/47/fulltext (1).pdf
    Size:
    1.830Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Kostrzebski, Melissa A.
    Keyword
    Thesis 1977
    Brockport Thesis Collection
    Environmental Science And Biology
    Drosophila
    Notch Gene
    Mutation
    BTC
    Date Published
    2010-07-25
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/6424
    Abstract
    The Notch gene encodes a transmembrane protein that functions as a receptor for intracellular signals in Drosophila melanogaster. The Notch gene is required for cell proliferation as well as differentiation. A Notch mutation, Nnd-p, is caused by the insertion of a P element into the first exon upstream of the start of translation of the Notch gene. The insertion causes a weak Notch mutation. This Notch mutation is lethal in the presence of an enhancer of rudimentary mutation. This lethality of the X chromosome that contains Nnd-p and e(r)27-1 was hypothesized to be caused by an interaction between these two mutations. In order to support this hypothesis, two aims were done. The first aim was to revert Nnd-p and then examine the viability in the presence of e(r)27-1. The second aim was to revert the lethality of the Nnd-p e(r)27-1 chromosome and then examine the Nnd-p mutation. It was determined that the Nnd-p mutation is the cause of the lethality. In the first case where Nnd-p was reverted, the lethality was also reverted. In the second case where the lethality was reverted, Nnd-p was concurrently reverted. The two Nnd-p revertants, R(Nnd-p)4 and R(Nnd-p)9, were determined to be imprecise excisions of the P element where the P element left some of its DNA behind. New Notch mutations caused by the mobilization of the P element Nnd-p were also isolated. Each of them (N2, N3, and N5) resulted in a further decrease in Notch activity. Each of the mutations were analyzed by PCR and DNA sequencing in order to determine the precise structure of the mutation. The mutant phenotypes were studied by examining viability of both the larvae and the adults. By examining the viability, the point in the Drosophila life cycle where the lethal interaction occurs can be determined. Crosses were set up between males with the X chromosome tagged with GFP and female containing a Notch mutation on one of the X chromosomes and GFP on the other. The males and females were scored based on their visible phenotypes. The larvae were observed through the 1st, 2nd, and 3rd Instar stages. The N2 and N3 mutants were found to be embryonic lethal. Observing the viability of the larvae, shows that the e(r) gene can affect N expression in the embryo stage. The Notch mutant larvae did not give rise to adult flies, except for one N3 male that survived to adulthood. This revertant of N3 was found to have a wild type Notch gene probably due to recombination with the GFP-containing X chromosome. The lethal interaction between Nnd-p e(r)27-1 was previously shown to be during the pupal stage, however, N5 e(r)27-1 was found to be lethal during embryogenesis. These results indicate that e(r) is necessary for Notch activity both during embryogenesis and metamorphosis.
    Collections
    Environmental Science and Ecology Theses

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.