• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Environmental Science and Ecology Theses
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Environmental Science and Ecology Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigating the ecology of a threatened ecosystem: Alpine snowbank communities of Mt. Washington, NH

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    env_theses/111/fulltext (1).pdf
    Size:
    2.085Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Berend, Kevin M.
    Keyword
    Alpine
    Snow
    Plants
    Phenology
    Community
    Traits
    Gradient
    Ecotype
    Climate
    Northeast
    Date Published
    2018-03-08
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/6364
    Abstract
    In northeastern North America, alpine snowbank (or snowbed) communities are rare plant assemblages that form in sheltered sites above treeline where late-lying snow provides insulation from late-season frosts and a longer-lasting source of water. These communities are highly diverse and may provide many beneficial ecosystem services. Though work has been done to document their location and community composition, little is known about the relationships between plants and abiotic conditions in alpine snowbanks of the Northeast. We studied the relative effects of snowmelt date and temperature on the phenological responses of seven alpine snowbank plants and examined plant traits and community metrics (diversity and richness) across the snowmelt gradient at alpine snowbank sites on Mt. Washington, NH. Peak of observed phenophases was positively correlated with snowmelt date, but lag time (time between snowmelt date and peak phenophase) was negatively correlated with snowmelt date. Higher temperature was an important factor in the quickened phenological response of plants at later-melting sites. There was a clear transition in both community composition and traits across the snowmelt gradient; moving outward from snowbank cores, vascular plant diversity decreased and lichen diversity increased, with no trend evident in bryophytes. This corresponded to a transition in observed traits both within species and at the community-level, with snowbank core habitats having lower leaf dry matter content and greater height, leaf area, and specific leaf area than edge habitats. A similar difference in plant traits was observed among conspecifics between lowland and alpine habitats, though we were unable to conclude whether alpine ecotypes of those species exist. The change in environmental conditions across the snowmelt gradient, mediated by snow persistence, is important in determining plant phenological responses and growing conditions on Mt. Washington in ways as found elsewhere at similar sites worldwide. Due to prevalence of leafy species and reliance on specific environmental conditions, alpine snowbank communities are considered particularly sensitive to environmental change, and may be indicators of climatic trends occurring in northeastern North America.
    Collections
    Environmental Science and Ecology Theses

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.