• Accommodation to wavefront vergence and chromatic aberration: color normal and deutan observers

      Wang, Yinan (2009-05-18)
      Purpose: Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur (McLellan, Marcos, Prieto, & Burns, 2002). We examined the effect of pupil size and LCA on accommodation in color normal and deutan observers. Methods: Participants were nine normal trichromats, three deuteranomalous trichromats, and two deuteranopic dichromats (anomaloscope and D-15). Accommodation was recorded by infrared optometer (100 Hz) and pupil by video-camera (30 frames/s) while observers viewed a sinusoidally moving Maltese cross target (1-3 D at .2 Hz) in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m2) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m2) and two artificial pupil conditions (3 mm and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between zero and 4 D (COAS, Wavefront Sciences). Results: Dynamic gain to vergence modulation increased significantly with pupil size in monochromatic (p=.005) but not white light (p=.12), and gain increased significantly with addition of LCA at both pupil sizes (5.7 mm, p=.004; 3 mm, p=.02). Mean RMS higher order aberration increased from .23 m with small pupils (3 mm) to .48 m with large pupils (5.7 mm). There were no significant differences in dynamic accommodation between color normal and deutan individuals for any condition (.68≤p≤.96). Normals and deutan observers showed large individual differences in dynamic gain to both vergence and LCA. Mean responses also varied among individuals, but deuteranomalous observers over-accommodated compared to color normal observers (.06≤p≤.12). Conclusions: Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation in normal and deutan observers. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best at 3 c/deg where blur from higher order aberrations is less (Mathews, 1998; Mathews & Kruger, 1994).
    • Accommodation to wavefront vergence: adapting ‘averse channels’

      Chen, Angela (2008-06-02)
      Purpose: Accommodation responds to wavefront vergence, but the mechanisms for vergence detection are unknown. One possibility is that accommodation responds to the angle of incidence of light at edges blurred by defocus. ‘Averse channels’ that sample light from opposite sides of the pupil were hypothesized by Makous (1968, 1977). Makous named the phenomenon a “transient” Stiles-Crawford effect because he found that there was a reduction in sensitivity to light entering one side of the pupil that lasts for a short period of time. Such ‘averse channels’ that sample modulation across the pupil are a possible mechanism for detecting the sign of defocus. The purpose of the present experiment is to determine whether such ‘averse channels’ can operate separately of each other to specify the sign of defocus for accommodation. Method: Accommodation was monitored continuously while subjects viewed a vertical monochromatic (548nm) luminance edge (1.0 contrast) that stepped either to a far or near direction in a Badal optometer. Various levels of adapting field were used to reduce the contrast of the edge (0.48, 0.36, 0.26, or 0.17 contrast) to determine the contrast threshold for accommodation. In a final experiment, an adapting field entered the eye through the nasal or temporal side of the pupil, to selectively adapt nasally or temporally tuned ‘channels’, while the target stepped randomly toward or away from the eye. The orientation of the vertical edge was either bright on the right side or bright on the left. Results: In a preliminary experiment, only five out of twenty-six subjects showed reliable and consistent responses, with gains >0.5 for both positive and negative step change in vergence. The contrast threshold for accommodation to step changes in target vergence was approximately 26%. Data from three subjects who accommodated reliably to both directions of step changes in vergence do not support the claim that ‘channels’ sample light separately from opposite sides of the pupil to determine the sign of defocus. Conclusion: Potential factors that account for the poor accommodative responses in the present study include: 1) the target was illuminated with monochromatic light, 2) the target was a simplified stimulus in which the blur was in only one direction (one spatial phase), 3) the target was viewed monocularly, 4) the 3mm artificial pupil increased depth-of-focus and removed the normal dynamic behavior of the pupil, 5) our subjects were untrained. The negative results suggest alternate hypotheses: 1)‘averse channels’ work in conjunction with each other, not separately, to detect vergence, 2) ‘averse channels’ can function separately to detect vergence, but the signal was undetectable using the current method, and 3) ‘averse channels’ do not mediate vergence detection.
    • Dynamic and Static Aspects of Accommodation in Mild Traumatic Brain Injury

      Green, Wesley (2009-05-18)
      Purpose: To assess static and dynamic parameters of accommodation in a group of patients with mild traumatic brain injury (mTBI) that reported symptoms associated with near work. Methods: A range of laboratory and clinical measurements of accommodative function were assessed in 12 patients with mTBI, as well as in 10 visually-normal control subjects. Static parameters included push-up and minus-lens accommodative amplitude, positive and negative relative accommodation (PRA/NRA), horizontal and vertical near heterophoria, accommodative convergence-to-accommodation (AC/A) ratio, accommodative stimulus/response function (AS/R), and tonic accommodation. Dynamic parameters included time constant, peak velocity, gain, steady-state response level, steady-state response variability, and accommodative flipper facility rate, including changes in flipper rate after a three-minute fatigue session. Results: All individuals with mTBI manifested a multitude of abnormal accommodative response characteristics. With respect to dynamic parameters, abnormal responses in those with mTBI were found for time constant, peak velocity, accommodative flipper facility fatigue, and steady-state response variability. With respect to static parameters, abnormal values in those with mTBI were found for accommodative amplitude, AC/A ratio, PRA/NRA, and horizontal near heterophoria. Conclusions: The results of the present study provide further evidence that there is a substantial impact of mTBI on accommodative function. With the global nature of the brain insult, it may be presumed that accommodation would be affected by disturbances in various cortical, cerebellar, and/or brainstem areas and along related axonal pathways. Specifically, the reduced peak velocity and related increased time constant found in the mTBI group could be due to damage of neurons carrying accommodative velocity information (i.e., burst cells). This could result in a decrease in either their firing rate or the number of activated cells. The resultant symptoms at near, such as transient blur, can have a negative impact on the overall quality of life and functional capabilities.
    • Nearwork-Induced Transient Myopia (NITM) Following Marked and Sustained, but Interrupted, Accommodation at Near

      Arunthavaraja, Mathangi (2010-07-16)
      Purpose: It has been speculated that non-decayed NITM (accommodatively-based nearwork-induced transient myopia) may be myopigenic in nature. Thus, the purpose of the present investigation was to determine objectively the initial magnitude and decay of NITM, and its potential additivity, following successive but interrupted periods of marked, sustained accommodation at near in asymptomatic young-adult myopic subjects. Methods: Fifteen visually-normal, asymptomatic young adults (ages 18 – 28 years) were tested with full distance refractive correction. They included 9 early-onset (EOM) and 6 late-onset (LOM) myopic subjects. Accommodation was assessed objectively with a Canon R-1, open-field, infrared auto-refractor under monocular viewing conditions (RE). The distance refractive state was measured immediately before and after a ten minute period of focusing upon a moderate contrast (50%), very near target (12 cm; 8D) subtending a visual angle of 1 degree. The task was repeated twice with a 5-minute inter-task rest period of imposed far viewing. NITM was defined as the post-task minus pre-task change in distance refractive state immediately following each task. Results: Significant amounts of NITM were generated following nearly each trial in each subject. These ranged from 0.11 to 0.71D, with a mean of 0.31D. The group mean NITM was 0.32, 0.29, and 0.31D for trials 1, 2, and 3, respectively. For the EOMs subgroup, NITM was 0.28, 0.30, and 0.34D, while for the LOMs subgroup, it was 0.38, 0.29, and 0.26D, for for trials 1, 2, and 3, respectively. Decay of NITM was prolonged in many of the subjects (67%). However, additivity of NITM was not found following the sequences of interrupted near tasks. Conclusions: There was no evidence of NITM additivity following a marked and sustained, but interrupted, near task. Although NITM has been reported to be additive following long periods of uninterrupted and sustained reading at lower dioptric levels, providing rest periods between each near task trial appears to prevent a cumulative effect (i.e., additivity effect). These findings support the idea of far viewing being protective in nature from myopia development.