• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Biology Master’s Theses
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Biology Master’s Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A New Functional Zebrafish Gastrointestinal Motility Assay

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    bio_theses/87/fulltext (1).pdf
    Size:
    1.446Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Hess, Stacey
    Keyword
    Gastrointestinal Motility
    Kit Receptor
    Mutations
    Contraction Frequency
    Fluorescence Spectroscopy
    Wildtype Larvae
    Date Published
    2007-08-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/4567
    Abstract
    Gastrointestinal (GI) motility is the coordinated contractions of smooth muscles resulting in mixing and propulsion of material through the GI tract. GI motility is influenced by smooth muscle, enteric neurons, and Interstitial cells of Cajal (ICC). New model systems for GI motility are needed because regulation of motility is poorly understood, and the number of drugs which can assist in GI motility disorders is insufficient. The Kit receptor is required for ICC development and maintenance in mammalian model systems and in humans. Mutations in the Kit receptor are associated with GI motility disorders. The objective of these experiments was to determine motility patterns in wildtype zebrafish and compare them to motility patterns in the zebrafish kita null mutant, sparse (spab5). Contraction frequency was measured from 7 minute digital video recordings of anesthetized larvae immobilized in 1.2% agar. Contraction frequency averaged 0.586 ± 0.222 contractions per minute in wildtype larvae at 7 dpf, and 0.329 ± 0.158 contractions per minute in 7 dpf sparse. The apparent contraction intensity was also scored, with a score from 0, no contractions, to 2, complete occlusion of the lumen. Contraction intensity averaged 1.250 ± 0.444 in wildtype larvae and 1.619 ± 0.498 in sparse larvae at 7 dpf. At 11 dpf contraction intensity decreased to 1.000 ± 0.000 and 1.125 ± 0.354, respectively. A functional motility assay was developed to quantify GI motility that contributes to propulsive movement of intestinal contents. Larvae were fed FITC labeled microspheres, washed, and fluorescence intensity of the GI tract was digitally imaged. Larvae were placed in clean system water, and reimaged after 24 hours. Fluorescence intensities were normalized against initial intensity of ingested microspheres at 7 dpf in the intestinal bulb of the anterior GI tract. At 7 dpf the change in fluorescence intensity in the anterior GI tract decreased by 0.371 ± 0.030 and 0.119 ± 0.021 in the posterior GI tract of wildtype larvae. At 11 dpf fluorescence intensity decreased to 0.455 ± 0.056 in the anterior GI tract, and 0.258 ± 0.046 in the posterior GI tract. Peritoneal injection of the ACK-2 anti-Kit antibody results in distention and an increased volume in the GI tract (Figure 12) (Maeda, Yamagata et al. 1992). These effects result from inactivation of Kit function by ACK-2. The size of the GI tract in sparse larvae appeared to be larger compared to wildtype, suggesting that the null kita mutant resulted in a phenotype similar to the ACK-2 effects on mice. We measured the area of a longitudinal cross section of wild type and sparse mutant larvae at 7 dpf. The average area of the GI tract in wildtype larvae was 4491 ± 754 and 5532 ± 880 in sparse larvae. Fluorescence spectroscopy was used to quantify the fluorescence intensity. Total fluorescence emission averaged 62,630 ± 23,780 counts per second immediately after ingestion in 11 dpf larvae. One day later, total fluorescence intensity averaged 53,277 ± 6,333 counts per second, a 15% decrease. 5-hydroxytryptamine (5-HT), a prokinetic agent, was used to validate the assay. One day after loading, the total fluorescence intensity decreased after application of 5-HT to 86,820 ± 21,850. 11 dpf zebrafish larvae ingest fluorescent labeled microspheres, and spectroscopic analysis showed reduced fluorescence intensity one day after loading. Functional studies showed a reduced contraction frequency and an increase in surface area between sparse mutant and wildtype larvae. The decrease in fluorescence intensity in wildtype larvae suggests aboral movement of microspheres, out of the posterior GI tract.
    Collections
    Biology Master’s Theses

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.