• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Biology Master’s Theses
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Theses
    • Biology Master’s Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Gastrointestinal (GI) Motility is Unaltered by Feeding in Zebrafish

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    bio_theses/71/fulltext (1).pdf
    Size:
    3.576Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Diamond, Amanda Marie
    Keyword
    Motility Patterns
    Zebrafish
    Larvae
    Prokinetic
    FITC-Dextran
    Date Published
    2012-08-08
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/4548
    Abstract
    Gastrointestinal motility patterns in humans are not constant and respond to the luminal contents and nutrient status (Degen and Phillips, 1996). The zebrafish is a new model system for human GI motility and regulation of motility patterns appears to be controlled by enteric neurons and interstitial cells of Cajal (Huizinga et al., 1995, Farrugia et. al., 2003, Sanders et.al., 2006, Rich et. al., 2007). Although several research laboratories investigate GI motility in zebrafish larvae, no standard protocol for feeding exists and experiments may be performed on fasted or fed larvae. The goal of this study was to examine the effects of feeding on GI motility when ICC and enteric neurons are developed and regulate GI motor patterns in larvae, at 7 days post fertilization ( dpt) (Rich et. al., 2007). Larvae were fasted or fed once daily beginning at 5 dpf. At 7 dpf larvae were fed dry food labeled with FITC-dextran and GI motility was measured using time-lapse imaging and image analysis techniques. Motility was examined in the anterior and the posterior regions of the GI tract. No differences were observed in fish standard length, a developmental marker. The total number and distance of contractions increased in the anterior intestine after feeding. These data suggest that feeding has little influence on GI motility patterns in the posterior intestine. The effects of Cisapride, a prokinetic in humans, was examined and found to increase the contraction number, velocity, and interval. The effects of Niflumic Acid and DIDS were also examined, because anoctamin 1 (ANOl), a chloride-selective channel, has recently been identified as a potential regulator for ICC pacemaker function. Both drugs dramatically reduced the total number of contractions as well as the GI motility index indicating a reduction in coordinated motility patterns. Cisapride, Niflumic Acid, and DIDS have similar effects on GI motility in mice and in the zebrafish, suggesting that similar molecular mechanisms regulate GI motility in zebrafish and mice. The findings contribute to the validation of the zebrafish model system for human GI motility function.
    Collections
    Biology Master’s Theses

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.