• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Scholarship
    • Technical Reports (Water Resources)
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Scholarship
    • Technical Reports (Water Resources)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Genesee River Watershed Project. Volume 1.Water Quality Analysis of the Genesee River Watershed: Nutrient Concentration and Loading, Identification of Point and Nonpoint Sources of Pollution, Total Maximum Daily Load, and an Assessment of Management Practices using the Soil Water Assessment Tool (SWAT) Model. A report to the USDA.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    tech_rep/124/fulltext (1).pdf
    Size:
    5.121Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Makarewicz, Joseph C.
    Lewis, Theodore W.
    Snyder, Blake
    Winslow, Mellissa Jayne
    Pettenski, Dale
    Rea, Evan
    Dressel, Lindsay
    Smith, William B.
    Keyword
    Soil And Water Assessment Tool
    Genesee River
    USDA
    Watershed Management
    Date Published
    2013-01-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/4327
    Abstract
    The Genesee River Project, conducted from August 2010 to August 2013, provides a detailed picture of sediment and phosphorus concentrations (e.g., weekly water chemistry sampling), nutrient loading, allocation and identification of phosphorus sources, and the effectiveness of management practices on the four major Genesee River tributaries (Canaseraga, Honeoye, Black, and Oatka Creeks), the Upper Genesee River, and the lower Genesee River. With 60% of the P load (412,505 kg P/yr) from the Genesee River to Lake Ontario being of anthropogenic origin, a managed reduction in P lost from the Genesee watershed is apparent. Models using the Soil and Water Assessment Tool (SWAT) were developed and segment analysis performed on these subbasins to determine sources of material losses. Together these two bodies of information, the total amount of nutrients and sediments lost from the watershed and the sources of these losses, served as a tool for suggesting a watershed management strategy. SWAT models were employed to test the effectiveness of best management practices (BMPs) on land use and to determine the minimum potential phosphorus concentration expected in the subwatersheds. Simulations of BMPs of management practices on both point and nonpoint sources indicated that phosphorus, a valuable nutrient to crop production, can be effectively kept in the watershed and out of Lake Ontario, where elevated phosphorus stimulates algae production and is implicated in beach closings in the Rochester Embayment. Using our most effective simulated scenario, grassed waterways and upgrading of wastewater treatment plants to tertiary treatment, a 32.9% (135,714 kg P/yr) reduction in P loading from the Genesee River to the nearshore of Lake Ontario with Genesee River concentrations at 65 ?g P/L is predicted - within the debated target goal of 65 ?g TP/L for streams in New York State. Volume 1 covers the entire watershed while volumes 2 to 6 report on specific tributary watersheds. The P load allocation analysis indicates that 60% of the total phosphorus load to Lake Ontario is due to anthropogenic sources and only 40% is due to natural sources.
    Description
    This work is licensed under a Creative Commons Attribution 3.0 Unported License
    Collections
    Technical Reports (Water Resources)

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.