• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Scholarship
    • Posters@Research Events
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Scholarship
    • Posters@Research Events
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of a monolithically 3D printed reciprocating pump for HPLC

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    research_posters/45/fulltext ...
    Size:
    654.2Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Palmowski, Megan
    Date Published
    2020-01-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/4170
    Abstract
    There has been much research in recent years aiming to make scientific instrumentation more accessible. An increase in accessibility has many benefits including reduced costs and expanded opportunities to learn about instrumentation. 3D printing of scientific instrumentation provides an option that is cheap and customizable. This study follows the development of a 3D-printed ball check valve to be implemented in a reciprocating pump such as one used for high performance liquid chromatography (HPLC). The valve was designed using OpenSCAD and printed using a Prusa i3 MK2S 3D printer. Ball check valves with both a spherical and conical design were designed, and early qualitative tests point towards the conical design being desirable. Future work includes the design of a reciprocating piston, the implementation of the piston along with two check valves to create a complete reciprocating pump, and quantifying pressures achieved by the pump.
    Description
    Fall 2020 Symposium: Undergraduate Research and Internship Day
    Collections
    Posters@Research Events

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.