• Micro-plastic Bioaccumulation in Yellow Perch (Perca flavescens) of Lake Champlain

      Mason, Sherri; Garneau, Danielle; Moseman, Erin (2015)
      Micro-plastics are discharged into watersheds through wastewater treatment plant effluent and onward into waterbodies. Studies have shown that micro-plastics are bioaccumulating within aquatic organisms found in both fresh and salt water. Students at SUNY Fredonia are jointly working with SUNY Plattsburgh to identify and quantify micro-plastics from within fish digestive tracks from the Great Lakes and Lake Champlain. Dr. Sherri Mason's team at Fredonia has identified dark fibers as the most abundant micro-plastic in fish digestive tracts (> 85%), with yellow perch (Perca flavescens), being the most frequent species containng plastics (94.4%). SUNY Plattsburgh sampled eight yellow perch caught ice fishing in Monty's Bay, Lake Champlain. Digestive tract samples were digested in a wet-peroxide solution then left to dry for further examination. All fish sampled contained microfibers within their digestive tracts, 75% of individuals contained fibers present while 25% had foam-like plastics. These samples will be further examined by Dr. Sherri Mason's lab for further confirmation on type, color, and polymer. In the future SUNY Plattsburgh plans to examine micro-plastics in zooplankton and cormorants to represent a trophic dynamic bioaccumulation of micro-plastics in Lake Champlain.
    • Microplastic Bioaccumulation in invertebrates, fish, and cormorants in Lake Champlain

      Garneau, Danielle; Hammer, Chad; VanBrocklin, Hope (2016)
      It is estimated in the United States that 8 trillion microbeads enter our waterways daily. Microplastics are typically discharged into local watersheds through wastewater treatment plant effluent and marine debris, with as much as 1600 synthetic fibers emanating from washing a single piece of clothing. In this project, we assessed microplastic load within Dreissena polymorpha (zebra mussels), Gammarus fasciatus (amphipods), fish, and Phalacrocorax auritus (double-crested cormorants) digestive tracts. Specimens were processed using KOH bath, followed by wet peroxide oxidation digests. Bioaccumulated microplastics were characterized based on type (e.g., fragment, pellet/bead, fiber, film, foam) and size. Results suggest that the majority of microplastics combined for all organisms investigated were fibers (67%), fragments (19%), films (10%), and pellets/beads (4%). No microplastics were observed in zebra mussels. Amphipods contained fibers (50%), fragments (25%), and films (25%). Species-specific trends were observed among fish, specifically Osmerus mordax (rainbow smelt), Cottus cognatus (slimy sculpin), and Micropterus salmoides (large-mouth bass) are primarily consuming fibers. Bluegill sunfish (Lepomis macrochirus) and rainbow smelt were the only species to consume pellets/beads (40%) and films (16%), respectively. Double-crested cormorants contained primarily fibers (78%), as well as films (19%), with minor contributions of pellets/beads and foam. Spatial distribution of microplastic load was greater in rainbow smelt at the most northern and southern sampling sites on Lake Champlain. In freshwater systems, microplastics absorb chemical pollutants and release plasticizers (e.g., carcinogens, neurotoxins, endocrine disruptors) into tissues, with the potential for fitness consequences in wildlife and humans.
    • Microplastic Biomagnification in Invertebrates, Fish, and Cormorants in Lake Champlain

      Garneau, Danielle; Stewart, James; Walrath, Joshua; Putnam, Alex; Hammer, Chad; VanBrocklin, Hope; Buksa, Brandon; Clune, Alexis (2018)
      The goal of this research was to determine whether microplastics (MP) are uptaken by invertebrates, fish, and Phalacrocorax auritus (double-crested cormorants) resident to Lake Champlain. We did so by quantifying and characterizing (e.g., fragment, fiber, film, foam, pellet) plastic particulate.Wet peroxide oxidation digests were performed on digestive tracts of 506 lake organisms, specifically invertebrates (n = 301), 15 species of fish (n = 190), and Phalacrocorax auritus (double-crested cormorants) (n = 15). Our research indicated that fibers were the were the most common (80.1%) type of particulate found in all organisms, followed by fragments (9.64%), films (6.36%), foam (3.01%), and pellets (Amia calva) contained the greatest average number of plastic particulate (n = 29.67), followed by lake trout (Salvelinus hamaycush) (n = 21.42), and northern pike (Esox lucius) (n = 20.1). Among digested fish, stomachs contained the greatest mean number of MPs (n=5.62), followed by the esophagus (n=5.36) and intestines (n=4.8). These findings suggest biomagnification and/or direct ingestion is occurring in Lake Champlain organisms, as invertebrates, fish, and double-crested cormorants contained on average 0.36, 6.08, and 22.93 microplastic particles.
    • Microplastic Pollution: A Survey of Wastewater Effluent in the Lake Champlain Basin

      Garneau, Danielle; Moriarty, Melissa; Lee, Erin; Brown, Sadie; Buksa, Brandon; Niekrewicz, Thomas; Barnes, Jason; Chaskey, Elizabeth (2018)
      Microplastic is defined as particulatefragments, fibers, films, foams, pellets, and beads. Microplastic pollution was first documented in the 1970s and interest has grown from initial characterization, to effects within marine and freshwater food chains, ultimately impacting human health. Due to their small size, porosity, and density variation, microplastics often escape wastewater treatment processing (WWTP). Commencing in 2015, we surveyed WWTP post-treatment effluent (N = 59) from the city of Plattsburgh, NY and beginning in fall 2016 from St Albans, VT (N = 29), Ticonderoga, NY (N = 23), and Burlington, VT (N = 9). Effluent samples were collected and digested using wet peroxide oxidation methods, followed by microscopic characterization based on type and size. Plant specifications yielded varied microplastic trends in quantity and type, specifically Plattsburgh largely emitted fibers and fragments, St. Albans emitted a majority of foam, Ticonderoga emitted mostly fibers, and Burlington emitted a majority of fragments. Estimated microplastics released per day ranged from St. Albans (30,268), Plattsburgh (14,105), Burlington (16,843), to Ticonderoga (7,841). Microplastics are an emerging concern for aquatic life as they can biomagnify and adsorb harmful chemicals which bioaccumulate up the food chain. They have been found to impair feeding and reduce survival in many aquatic species. This research further documents wastewater treatment plants as a significant source of microplastics entering Lake Champlain and serves as a basis for further microplastic studies in the Lake Champlain watershed. As plants are not designed to capture these small particulate, consumer behavior must evolve to reduce this pollution threat.
    • Spatial and Temporal Distribution and Abundance Microplastics in Lake Champlain Long-Term Monitoring Samples

      Garneau, Danielle; Allen, Eileen; Hagar, Susan-Marie; Austin, Lindsey (2017)
      Microplastics are particles less than 5mm in size, characterized as fibers, fragments, beads, foams, and pellets. Microplastics (MP) arise from four main processes: environmental degradation (UV exposure, mechanical and/or biological), direct release by means of wastewater treatment processing, unintentional loss of raw materials, and discharge of macerated wastes. Microplastics are potentially toxic to aquatic biota and the presence of microplastics in freshwater ecosystems is largely under-researched. The goal of our research was to examine the spatial and temporal distribution of microplastics and pre-production particulate (nurdles) from long-term monitoring (LTM) zooplankton samples within Lake Champlain collected between 1992-2016. Nurdles were counted in full from samples, whereas microplastics (e.g., fragments, fibers) were subsampled due to size. Fourier Transform Infrared Spectroscopy (FTIR) characterized nurdles as polyisoprene rubber ribbon. Within the LTM samples (n = 2265), nurdles (n = 3455) and microplastics (n = 249), predominantly fibers, were identified. The greatest microplastic abundance was noted in 2015 (n = 73 microplastics, n = 494 samples). Nurdles were found only in samples that had been collected 2012-2016, with the greatest nurdle abundance noted in 2012 (n = 1,169 nurdles, n = 412 samples) and at varying depths. Nurdle abundance declined since the 2012 peak and in 2015 was greatly reduced (n = 531 nurdles, n = 494 samples). Spatial distribution maps suggest the complexity of the story with high abundances at deep central locations, as well as shallow isolated bays. The high influx of nurdles in 2012 may be related to the 2011 Lake Champlain flood; however more research will need to be conducted to tease apart timing and potential nurdle point-sources (e.g., train tracks, industrial/urban centers).
    • A Survey of Microplastic Pollution from Wastewater Treatment Plant Effluent Within the Lake Champlain Basin

      Le Tarte, Lucas; McCauley, Nathaniel; Moriarty, Melissa; Lee, Erin; Buksa, Brandon; Niekrewicz, Thomas; Garneau, Danielle (2019-05)
      Microplastics are an emerging and ubiquitous pollutant. Recent studies suggest that consumer care products and laundering of synthetic garments are major sources of microplastics. Most current wastewater treatment plant (WWTP) technologies are limited in their ability to remove particulate <5mm in size and pose a threat to aquatic organisms. Since 2013, we have been surveying WWTP post-treatment effluent samples with the city of Plattsburgh, NY (N = 61), in 2016 we brought online St Albans, VT (N = 64), Ticonderoga, NY (N = 42), and Burlington, VT (N = 21), and in 2017 Vergennes, VT (N = 20). Post-treatment effluent samples derive from 24 hour plant sampling events and were processed using wet peroxide oxidation methods. All samples were characterized based on the type of microplastic (e.g., fragment, fiber, pellet, film, foam), size, and color, as well as polymer type using Fourier Transform Infrared Spectroscopy (FTIR). Plant-specific characterization revealed fibers were the most common microplastic in Vergennes (55%) and Ticonderoga (39%), as compared to foam (52%) in St. Albans, fragments (43%) in Plattsburgh, and similar proportions of fragment and films (31%) in Burlington. Estimated output of microplastic particles per day were: Plattsburgh (n = 14,972), St. Albans (n = 28,620), Burlington (n = 19,806), Ticonderoga (n = 10,544), and Vergennes (n = 576). Additionally, polymer type varied by plant and included HDPE, PVA, and styrene. Differences likely reflect plant characteristics, for example Plattsburgh and Burlington serve a similar sized population and have a similar capacity, the difference in particle abundances may be due to varied infrastructure updates. In addition, St. Albans and Vergennes have tertiary treatment; however dates of recent upgrades vary. Microplastic pollution is a concern when we account for plant 24 flow rate and lakewide distribution. Microplastics have the potential to adsorb harmful chemicals residing in the water and pose risk to aquatic organisms and human health. By documenting wastewater treatment plants as a source of microplastics, we can share these findings with plant operators, lake stewards, government officials, and work towards solutions both up and downstream.
    • Survey of the Abundance and Distribution of Nurdles and Microplastics in Long-term Monitoring Zooplankton Samples from Lake Champlain

      Garneau, Danielle; Allen, Eileen; Hagar, Susan-Marie (2016)
      Microplastics are particles less than 5mm in size, characterized as fibers, fragments, beads,foams, and pellets. Microplastics arise from four main processes: environmental degradation(UV exposure, mechanical and/or biological), direct release by means of wastewatertreatment processing, unintentional loss of raw materials, and discharge of macerated wastes.Particulate polymers are identified as either lightweight (e.g., polypropylene andpolyethylene) or heavyweight (e.g., PET and PVC). Weight of the particulate dictates wherethey reside within the water column. The goal of this study was to quantify the abundanceand map the distribution of microplastics and nurdles, using long-term monitoringzooplankton samples from Lake Champlain. Microplastic sampling was conducted bysubsampling homogenized zooplankton samples (N=400) and were quantified usingextrapolation to larger sample volume. Fourier Transform Infrared Spectroscopy (FTIR) wasused to characterize nurdle polymer type as polyisoprene rubber ribbon. Nurdle distributionwas most abundant at 0-10m depth and at the southernmost end of Lake Champlain, in thevicinity of Whitehall and Ticonderoga, NY, historically associated with industry. Additionalnurdle hotspots occur in Shelburne and Missisquoi Bays located midway and at the northernreach of the lake. Microplastic abundance was greatest in the mid-section of the lake and atdepths of both 0-10m and 40-50m. Vertical particulate distribution is of greatest concern, assusceptible organisms are dispersed throughout the water column, with potential forbioaccumulation to higher tropic levels. Long-term microplastic impacts on Lake Champlaininclude intake for residential use, pathogenic and pollutant exposure during recreational use,as well as local economic impact via revenue loss associated with tourism and fisheries.