Now showing items 1-20 of 285

    • Engineering Generalized Protein-Based Biosensors for Molecular Detection and Clinical Applications

      Sekhon, Harsimranjit (2025-03-19)
      Protein-based conformational switches serve as powerful tools for the construction of biosensors and for the control of cellular processes. These proteins feature a binding domain that recognizes a specific analyte and is coupled to an output domain in such a way that the binding event causes the output domain to provide an observable signal. These signals can either be turn-on of fluorescence, luminescence, or enzymatic activity or consist of the sensor changing its color. A challenge in constructing these protein switches is finding binding domains capable of relaying a ligand binding event to the conformational change of an output domain. Generalized binding domains can address these challenges by providing a scaffold that can easily be modified to detect a different ligand. These generalized binding domains are small proteins with modifiable residues that can be selected to bind a ligand of choice, usually through phage display and similar selection techniques. Here, we present two approaches to make generalized protein switches. In the first approach, antibody mimetics nanobodies and monobodies are inserted in fluorescent proteins such that binding of their ligand causes an increase in fluorescence. This technique, named adaptable turn-on maturation (ATOM), was used to develop biosensors for WD-40 repeat protein 5 (WDR5), c-Abl src homology 2 (SH2) domain, hRas, postsynaptic density protein 95 (PSD95), gephyrin, HOMER1, and mCherry for use in mammalian cells. ATOM is, therefore, compatible with a variety of ligands due to its input domain being a generalized binding domain. Additionally, the ATOM mechanism can be used to convert many fluorescent proteins into biosensors. For demonstration, we made biosensors from Clover, mTurqoise, mTagRFP-t, mStayGold, mBaoJin, and GCaMP6s. In the second approach, we develop a luminescent protein switch from the enzyme nanoluciferase (nLucAFF) that switches color from green to blue upon DNA binding. We show that DNA-based devices can then be used to detect various ligands and relay that event to nLucAFF, which provides an output easily quantifiable by a cell phone. The nLucAFF protein was used to detect DNA sequences amplified from cytomegalovirus (CMV), dengue, and nCoV. Additionally, aptamers binding to serotonin and aptamers were used to detect these molecules by directing the nLucAFF color change. The initial version of nLucAFF was slow, dim, and had low sensitivity. These drawbacks were resolved in the next version, nLucAFF2, to achieve turn-on within 5 minutes and detect ligands down to 40 pM with a cell phone camera. The last chapter combines two ligand-binding domains to activate a small cytotoxic RNase, barnase, and paves the way for the development of multi-input protein switches that can potentially be generalized ligand-binding domains.
    • Nanobody development for therapeutically targeting Vacuolar H+-ATPases

      Knight, Kassidy (2025-03-18)
      The vacuolar H+-ATPase (V-ATPase, V1Vo) is a dedicated proton pump that is highly conserved amongst eukaryotes, and is necessary for pH homeostasis within subcellular compartments. The V-ATPase consists of two subcomplexes: the soluble V1 responsible for hydrolyzing ATP, and the membrane integral Vo responsible for proton translocation across membranes. V1 and Vo are each comprised of multiple subunits, A3B3CDE3FG3 and ac8c'c"def Voa1 respectively. Many basic cellular functions depend on the differential pH gradient across cellular membranes to operate properly, making regulation of V-ATPases through "reversible disassembly" immensely important. Global loss of V-ATPase activity is lethal to all mammalian cell types, while aberrant activity and incorrectly localized V-ATPase results in various disease states. Current therapeutics struggle to target specific V-ATPase populations, and as a potential solution to this problem we generated 94 nanobody clones against the yeast nanodisc reconstituted Vo (VoND). Nanobodies (Nbs) are the small 15 kDa VHH domain isolated from heavy-chain only antibodies that are known for their high specificity. In this dissertation we describe the characterization of three α-yeast VoND Nbs, N27, N125, and N2149. Using an ATPase assay, we found that N27, but not N125 or N21149, fully inhibited the activity of assembled V-ATPase. Contrastingly, N2149, but not N27 or N125, was found to inhibit the assembly of the two subcomplexes. BLI was used to identify the binding affinity of each Nb, with affinities being observed in the nM-pM range. High-resolution structures obtained from cryoEM revealed the subunit specificity of each Nb, with N27 and N125 found to bind the c-ring in different stoichiometries, and N2149 found to bind the d subunit. Furthermore, we determined that N125 has cross affinity for the human enzyme. Overall, this study provides evidence that novel nanobody mediated inhibition of assembly or activity of V-ATPases is an effective technique with broader implications of nanobody development into therapeutics.
    • Nanotherapeutics for Immune Modulation in Sepsis

      Messina, Jennifer (2025-03-04)
      Due to its complexity and heterogeneity, managing immune dysregulation in sepsis poses a significant clinical challenge. Thus, there is great demand to both improve our understanding of mediators of immune dysregulation in sepsis and develop nuanced therapeutic approaches to provide precise immune modulation for sepsis treatment. This thesis first investigates the novel phenomenon of cytokine charge disparity as a potential regulator of cytokine function. Then, two novel telodendrimer immune modulation approaches are presented as a personalized medicine strategy for sepsis. Through extensive database and literature review, we have established cytokine charge disparity as a potential mechanism for immune regulation. Using our versatile telodendrimers (TDs), we then optimized and validated our TD nanotrap approach for effective and selective targeting of plasma cytokines. Our lead selective TD nanotraps displayed charge selective cytokine targeting and our lead pan-affinitive TD nanotrap demonstrated superior cytokine removal efficacy compared to commercial resin control. Additionally, pan-affinitive TD nanotrap maintained efficacy across a wide range patient immune status, indicating promising therapeutic potential to reduce mortality risk associated with overwhelming cytokine profiles. To further expand our immune modulation tool set for sepsis treatment, we optimized our TD nanodrug for delivery of dimethyl itaconate (ITA) to control both hyperinflammation and pyroptosis. Encapsulating ITA into TD nanoparticles (ITA:TDNPs) resulted in a sustained-release profile and improved biocompatibility compared to free ITA. ITA:TDNPs more effectively inhibited both LPS- and LTA-induced inflammation and pyroptosis in macrophages compared to ITA or TDNP alone. Finally, ITA:TDNPs demonstrated superior therapeutic efficacy in both an IV LPS and polymicrobial cecal slurry sepsis model compared to individual therapies. Collectively, we have uncovered a novel phenomenon of cytokine charge disparity and validated it as a potential mechanism to regulate cytokine activity, as well as established it as targeting mechanism for effective immune modulation via charge selective TD nanotrap. We further developed an immune modulating TD nanodrug for ITA delivery to control both hyperinflammation and immune cell pyroptosis in sepsis. Through precise targeting of immune dysregulation in sepsis using a systematic multimodal TD therapeutic approach for personalized medicine, we may successfully improve patient outcomes in this devastating disease.
    • Mechanism of Mitochondria-Induced Muscle Atrophy During Aging

      Brennan, Nicholas (2025-02-27)
      Mitochondrial dysfunction is strongly associated with aging-related degenerative diseases including muscle atrophy. However, whether bioenergetic defects are the sole drivers of mitochondria-induced muscle atrophy remains unknown. The Chen lab discovered that various forms of mitochondrial damage can disrupt protein import, leading to the toxic accumulation of unimported mitochondrial precursors in the cytosol. This causes a stress termed mitochondrial Precursor Over-accumulation Stress (mPOS). A mouse model of mPOS was developed in which the mitochondrial inner membrane protein, ANT1, was overexpressed to saturate the protein import machinery. Ant1Tg/+ mice were found to have a severe muscle wasting phenotype. The overarching goal of this dissertation is to investigate the mechanism by which mPOS drives muscle wasting and its implications for normative muscle aging. The findings presented in this thesis led to three conclusions. First, we identified a novel mitochondria-to-lysosomal proteostatic axis through which mPOS induces lysosomal damage. Lysosomal damage subsequently causes the release proteolytic enzymes, which leads to excessive protein degradation and subsequent progressive muscle atrophy. Importantly, we found that this pathway operates independently of mitochondrial respiratory complex activity and reactive oxygen species (ROS) production. Second, we demonstrated the presence of mPOS in physiologically aged muscle. Sarcopenic muscle exhibited phenotypes similar to those found in Ant1Tg/+ mice, evidenced by overlapping transcriptional and proteomic profiles, and lysosomal damage. These findings indicate that mitochondria-induced changes to autophagic activity may play a central role in the pathogenesis of sarcopenia. However, considering the overall protein content of muscle is elevated during aging, we propose that reduced protein quality, rather than absolute protein content, drives sarcopenia. We therefore termed this phenomenon Muscle Atrophy Independent of Protein Content (MAIPC). Finally, we explored additional cellular factors that affect proteostasis and muscle mass maintenance. We found that the GCN2 kinase, a well-established activator of the Integrated Stress Response (ISR), plays a role in protecting myofibers from mPOS-induced stress and muscle wasting in Ant1Tg/+ muscle. Interestingly, we found that this effect is ISR-independent. The data presented in this dissertation provide valuable insights into the mechanistic role of mitochondrial dysfunction in both normative aging and chronic muscle wasting conditions. Our findings conclude that mitochondria-induced muscle atrophy is induced by mechanisms that extend beyond bioenergetic defects. By characterizing these alternative pathways, this work opens new avenues for therapeutic strategies targeting mitochondrial stress in chronic muscle wasting conditions.
    • Sociodemographic Factors and Vulnerability to Multiple Extreme Weather Events: A National Study in the U.S.

      Wong, Roger; Zhang, Lingling; Zhang, Kai (2025-03-01)
      Background Millions of U.S. residents experience increasingly more prevalent weather events due to climate change, however, there is limited research exploring the vulnerability to multiple extreme weather events using a national U.S. sample. Aims Identify patterns in exposures to climate events, and examine sociodemographic factors associated with increased climate event vulnerability. Method Data was retrieved from the May 2022 American Trends Panel, a nationally representative sample of 10,282 United States adults. We performed a latent class analysis, a statistical method used to identify unobserved subgroups (latent classes) within a population, to group respondents by patterns in five climate event experiences (heatwave, intense storm, wildfire, drought, and sea level rise), and analyzed variables associated with vulnerability to climate events using weighted multinomial logistic regression, a statistical method that models the probability of membership in one of several outcome categories (climate vulnerability groups) relative to a reference category, while accounting for survey weights to ensure generalizability to the U.S. population. Results Respondents were categorized into four latent classes, which are unobserved subgroups identified through patterns in exposures to five climate events (heatwave, intense storm, wildfire, drought, and sea level rise). These subgroups were based on exposures to heatwave (42.5 %), intense storm (43.2 %), wildfire (21.3 %), drought (30.8 %) and sea level rise (15.8 %): high (9.8 %), heat-storm (22.2 %), heat-drought (13.4 %), and low (54.6 %) climate event vulnerability. Relative risk for high climate event vulnerability refers to the likelihood of belonging to the “high vulnerability” group compared to the “low vulnerability” group. It is assessed using the relative risk ratio (RRR), which is a measure of the association between a particular sociodemographic factor (e.g., age, gender, region) and the likelihood of being in a specific vulnerability group relative to the reference group. For instance, an RRR <1 indicates a reduced risk, while an RRR >1 indicates an increased risk compared to the reference category. Relative risk for high climate event vulnerability was lower for older adults (RRR = 0.39, p < 0.001), potentially reflecting a greater capacity to cope with certain climate events, such as access to stable housing or resources. However, this finding should not be interpreted as older adults being universally less vulnerable. Numerous studies have shown that older adults are at significantly higher risk during heatwaves due to physiological and social factors, which our analysis may not fully capture. Relative risk for high vulnerability was higher for females (RRR = 1.42, p = 0.01) and residents in the South (RRR = 2.05, p = 0.003) and West (RRR = 9.31, p < 0.001) geographic regions. Relative risk for heat-drought was higher for Hispanic adults (RRR = 1.51, p = 0.03), but lower for high school graduates (RRR = 0.40, p = 0.01) compared to those who did not complete high school. Conclusions We identified several underlying climate event exposure subpopulations, ranging from low to high vulnerability. As climate-related events become more frequent, our results provide critical insights for stakeholders to identify high-risk individuals and prioritize resources for disaster management.
    • Non-neutralizing Antibodies in the Complex Dance of Dengue Clearance and Immune Avoidance

      Waldran, Mitchell (2025-02-13)
      Dengue virus (DENV) is endemic in over 100 countries causing widespread morbidity and mortality. Approximately 400 million people are infected annually with one of the four immunologically and genetically distinct serotypes of DENV, resulting in 100 million symptomatic cases and at least 40,000 deaths. While the mechanisms behind the pathophysiology of severe DENV infection are complex and incompletely understood, it has been previously suggested that antibodies directed against the DENV envelope (E) protein can facilitate antibody dependent enhancement (ADE) of the virus during secondary DENV infections, increasing the number of infected cells and the clinical severity of infection in an exposed individual. However, there are other functional roles for antibodies outside neutralization of the virion. In this thesis, we describe the roles of non-neutralizing antibodies during DENV-infection. We show that IgG and IgA non-structural protein 1 (NS1)- and E-reactive antibodies are capable of mediating monocytic phagocytosis of DENV-infected cells. We show that secreted NS1 (sNS1) acts as immunological chaff and abrogates NS1-reactive antibody-mediated phagocytosis. We also begin to investigate the potential of phagocytosis of DENV-infected cells to lead to lead to infection of phagocytic monocytes. The findings described in these studies have implications in therapeutics and vaccinations targeting both NS1 and E protein.
    • Unveiling cell-type-specific transcriptome and genetic regulation in postmortem brains of schizophrenia patients

      Dai, Rujia (2024-12-12)
      Schizophrenia is a complex psychiatric disorder with a poorly understood etiology. This dissertation addresses three critical questions in schizophrenia research: identifying involved cell types, characterizing their transcriptomic changes, and elucidating how these changes mediate genetic risk. After rigorous evaluation, we conducted a comprehensive analysis of cell-type-specific gene expression in postmortem brains of schizophrenia patients and controls with single-cell RNA sequencing and cell deconvolution methods. Our findings provide compelling evidence for the involvement of upper-layer neurons and multiple non-neuronal cell types in schizophrenia. We observed significant alterations in synaptic function, neurodevelopment, immune response, and vascular transport within their respective cell types. Notably, we demonstrate that genetic risk for schizophrenia is predominantly enriched in neurons, particularly upper-layer neurons, with partial enrichment in oligodendrocyte precursor cells and vascular cells. This cell-type-specific approach offers novel insights into the molecular underpinnings of schizophrenia, potentially bridging the gap between genetic risk factors and clinical manifestations. By highlighting key genes and pathways, our study establishes a robust foundation for future research and opens avenues for innovative preventive and therapeutic approaches.
    • Sleep disturbances and racial-ethnic disparities in 10-year dementia risk among a national sample of older adults in the USA

      Wong, Roger; Grullon, Jason Rafael (Cambridge University Press, 2024-12-04)
      Race/ethnicity and sleep disturbances are associated with dementia risk.
    • Mucosal Innate Immunity of Human Surfactant Protein A Genetic Variants against SARS-CoV-2 Infection

      Jacob, Ikechukwu (2024-11-18)
      More than 7 million people have died of the coronavirus disease-2019 (COVID-19) since first reported in December of 2019. Infection in some patients manifests as life-threatening ALI/ARDS, multi-organ dysfunctions, and/or death characterized by active viral replication and profound inflammatory cell influx into tissues/organs. SARS coronavirus-2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing cells through its spike protein (S protein). The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collectin, expressed by lung alveolar type II cells and other mucosal epithelial cells; it plays a crucial role in innate immunity and inflammatory regulation. SP-A modulates pathogenic infection and disease severity by binding to microbial and host glycoproteins to alter infectivity and regulate host inflammation. The human SP-A gene is located on chromosome 10q22-23, which contains two functional genes SP-A1 and SP-A2 (gene names: SFTPA1 and SFTPA2), and a pseudogene. SP-A1 and SP-A2 are highly polymorphic and consist of several genetic variants, such as SP-A1 (variants 6A2, 6A4) and SP-A2 (variants 1A0, 1A3). It has been demonstrated that these variants have differential antiviral and immunoregulatory capacities in response to various viral infections. The goal of this study was to investigate the mechanistic role of human SP-A variants in response to SARS-CoV-2 infection and COVID-19 susceptibility and severity. The results from this study showed that native human SP-A can bind SARS-CoV-2 S protein, receptor-binding domain (RBD), and hACE2 in a dose-dependent manner. A decrease in S protein and RBD binding was observed in the presence of EDTA and sugars, indicating that the SP-A carbohydrate-recognition domain (CRD) mediates S protein binding in a calcium-dependent manner. We further showed that human SP-A can attenuate viral infectivity in susceptible host cells, evidenced by the dose-dependent reduction in viral load in infected cells. These results suggest that human SP-A can bind SARS-CoV-2 S protein, RBD, and hACE2 to attenuate SARS-CoV-2 infectivity in susceptible host cells. Next, we examined the variations in antiviral and immunoregulatory roles of human SP-A variants in response to SARS-CoV-2 infection. The binding studies showed that in vitro-expressed SP-A variants differentially interact with S protein. Moreover, cells inoculated with SARS-CoV-2 pretreated with the 1A0 variant had a more reduced virus titer than those pretreated with the 6A2 variant, indicative of their differential antiviral capacities. These findings from in vitro studies demonstrated that human SP-A and their genetic variants directly interact with viral S protein to differentially modulate SARS-CoV-2 infectivity. To perform in vivo study, six genetically modified double-hTG mouse lines, expressing both hACE2 and the respective SP-A variants: (hACE2/6A2 (6A2), hACE2/6A4 (6A4), hACE2/1A0 (1A0), and hACE2/1A3 (1A3), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were generated and challenged intranasally with 103 PFU SARS-CoV-2 (Delta) or saline (Sham). We observed that these infected mice had differential COVID-19 severity. Infected KO and 1A0 mice had more mortality and lung injury compared to other mouse lines, and disease severity correlated with enhanced upregulations of inflammatory genes that play vital roles in host immunity such as MyD88 and Stat3 in the lungs of KO and 1A0 mice. Furthermore, pathway analysis identified several important signaling pathways involved in lung defense, including pathogen-induced cytokine storm, NOD1/2, toll-like receptor, neuroinflammation, and Trem1 signaling pathways. Consistent with the transcriptomic data, expressions of inflammatory mediators such as G-CSF, IL-6, and IL-1β were comparatively higher in the lungs and sera of KO and 1A0 mice with the highest mortality rate. We further examined other organ injuries (kidney, intestine, and brain) in the infected mice; we found a more severe acute kidney injury (AKI) and intestinal damage in KO and 6A4 mice compared to other double-hTG mice. Viral titers were generally lower in the kidneys and brains of infected double-hTG mice relative to KO mice. Inflammatory mediators like TNF-α, IL-6, IL-1β, and MCP-1 were comparatively higher in KO and 6A4 mice with the most severe AKI. High virus presence and inflammatory markers were also observed in the brain and hippocampus of all infected mice. The results from in vivo studies suggest that SP-A variants differentially protect against severe COVID-19. Furthermore, the human COVID-19 patient studies revealed increased SP-A levels in the saliva of COVID-19 patients compared to healthy controls and highlighted the potential use of SP-A levels as a biomarker for COVID-19 severity. Collectively, these findings underscore the importance of host innate immune collectins and contribute to our understanding of the roles of host genetic variations in the observed population-level differences in COVID-19 susceptibility and severity.
    • Deciphering cellular dynamics and crosstalk of trabecular meshwork and Schlemm's canal cells in a bioengineered 3D extracellular matrix hydrogel microenvironment

      Singh, Ayushi (2024-11-14)
      In the conventional outflow pathway, Schlemm's canal (SC) inner wall endothelium interfaces with the trabecular meshwork (TM). Biomechanical changes in this microenvironment contribute to increased resistance to aqueous outflow, a characteristic of ocular hypertensive glaucoma. Notably, TM undergoes fibrotic-like remodeling and stiffening. Existing in vitro TM/SC models fail to accurately replicate native cell-cell and cell-extracellular matrix (ECM) interactions, limiting their use for studying glaucomatous outflow pathobiology. In this dissertation, we utilized a biomimetic ECM hydrogel system made from natural polymers resembling native tissue proteins. This ECM hydrogel can be (i) used to encapsulate donor-derived primary human TM cells or (ii) employed as a substrate for culturing donor-derived primary human SC cells on top. As ECM hydrogels gradually emerge as a preferred model in diverse research laboratories, a standardized fabrication method is essential to improve accessibility and consistency across experimental protocols. Thus, a detailed methodology for producing these ECM hydrogels is provided in Chapter 2. In Chapter 3, using the 3D TM hydrogel system, we demonstrated that simvastatin-mediated inactivation of Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) attenuates pathological changes in TM cells. YAP/TAZ are key mechanotransducers involved in glaucoma pathogenesis and are shown to be regulated by the mevalonate pathway. By inhibiting this pathway, we hypothesized that statins could potentially improve TM cell pathobiology by modulating YAP/TAZ activity. Thus, targeting the mevalonate pathway with statins may offer therapeutic potential for glaucoma. Despite significant progress in understanding TM and SC cells individually, the dynamic interactions between them and their role in glaucoma pathogenesis remain poorly understood. These interactions are crucial in the pathogenesis of glaucoma, yet no effective model exists to study them. Therefore, in Chapter 4, we developed a novel co-culture hydrogel system to explore TM-SC interactions and assess how glaucomatous TM cells affect SC behavior. Our findings show that glaucomatous TM cells alone can induce pathological changes in SC cells, underscoring the critical role of cell-cell and cell-ECM interactions in glaucoma progression. Collectively, these biomimetic ECM hydrogels provide a unique platform for investigating glaucomatous outflow mechanisms and offering insights into disease pathogenesis.
    • HIV-1 has a sweet tooth: glucose metabolism drives the multistep process of HIV-1 latency reversal

      Kayode, Yetunde (2024-11-04)
      The major barrier to a cure for HIV-1 is the establishment of latency in long-lived CD4+ T cells within lymphoid tissues which readily fuel viral rebound upon antiretroviral therapy (ART) interruption. Therapeutic approaches aimed at eliminating these HIV reservoirs with latency reversal agents (LRAs) have hitherto yielded underwhelming results in clinical trials owing to our incomplete understanding of the exact determinants of meaningful latency reversal in vivo. While previous studies have associated glycolysis with HIV productive replication and latency reversal, the exact role and mechanistic link of glycolysis to HIV latency reversal remains undefined. Furthermore, few studies have investigated HIV latency under physiologically relevant metabolic conditions found in the anatomical reservoirs of HIV in vivo. The studies in this thesis reveal that glycolysis is a metabolic determinant of HIV latency reversal, particularly during physiological hypoxia. We show that the capacity of LRAs to modulate glycolysis determines their efficacies over a physiological range of glucose and oxygen availabilities as found across tissues in vivo. Mechanistically, glycolysis fuels histone lactylation, a novel post-translational modification (PTM) which we show is a stronger predictor xviii of latency reversal than the canonically recognized acetylation marks, and promotes chromatin accessibility at the HIV LTR. Beyond histone PTM modulation, glycolysis also modulates HIV RNA splicing, a critical post-transcriptional step in HIV latency reversal. Specifically, multiple splicing of rev, an HIV regulatory gene, is significantly downmodulated by glycolytic restriction in a hypoxia-dependent fashion. Finally, we show that glucose and oxygen availability impact the phosphorylation and lactylation of splicing factor 3B subunit 1 (SF3B1), a core component of the U2 spliceosome complex and HIV dependency factor which provides preliminary mechanistic insight to how glycolysis and hypoxia modulate HIV RNA splicing. Collectively, our findings uncover glucose and oxygen availability as critical metabolic determinants of HIV-1 latency reversal and support the rationale that physiologically relevant experimental conditions should be utilized in studies aimed at identifying therapeutic agents that effectively target the latent reservoir in vivo.
    • Racial and ethnic disparities in social isolation and 11-year dementia risk among older adults in the United States.

      Grullon, Jason; Soong, Daniel; Wong, Roger (Cambridge University Press, 2024-10-25)
      Social isolation has been implicated in the development of cognitive impairment, but research on this association remains limited among racial-ethnic minoritized populations. Our study examined the interplay between social isolation, race-ethnicity and dementia.
    • Kohlschütter-Tönz protein ROGDI is the homolog of yeast Rav2 and a novel Rabconnectin-3 subunit

      Winkley, Samuel (2024-10-10)
      V-ATPases are rotary proton pumps that are extraordinarily well-conserved among eukaryotes. V-ATPases function primarily to acidify intracellular compartments, critical to maintaining cellular homeostasis. The V-ATPase-generated proton gradient provides the optimal environment for lysosomal catabolism and drives intracellular protein trafficking. V-ATPases serve important functions throughout the human body. For example, V-ATPase activity energizes the active transport of neurotransmitters into synaptic vesicles, regulates the acid/base balance in the kidney, and helps the immune system recognize invading pathogens. However, when V-ATPase activity is inappropriately increased or decreased, these processes are affected, and disease can result. V-ATPases are composed of peripheral V₁ and integral membrane V₀ subcomplexes; V₁ hydrolyzes ATP and transmits rotation to V₀, which moves protons across a membrane. V-ATPase activity is regulated in part through the reversible association of the V₁ subcomplex and V₁C subunit from V₀. Upon disassembly, both V₁ and V₀ are catalytically inactivated. In yeast, the RAVE complex catalyzes the efficient reassembly of V-ATPases. Rabconnectin-3 is the human homolog of the RAVE complex and functions similarly. Mutations in the Rabconnectin-3 complex can reduce V-ATPase activity through decreased assembly, which leads to disease. Both Rabconnectin-3 subunits share substantial homology with the RAVE subunit Rav1. We have identified the poorly characterized protein ROGDI as the mammalian homolog of the yeast RAVE subunit, Rav2. ROGDI shares strong functional and structural homology with yeast Rav2. Expression of ROGDI in a rav2Δ yeast strain partially rescues the growth phenotype characteristic of RAVE mutants. ROGDI binds to the structurally conserved N-terminal β-sheet rich domain. AlphaFold3 modeling predicts that ROGDI binds between the Rabconnectin-3 subunits. ROGDI coimmunoprecipitates with Rabconnectin-3 and V-ATPase subunits. Additionally, ROGDI is present alongside V-ATPase and Rabconnectin-3 subunits on lysosomal membranes. This indicates that, like RAVE and Rav2, Rabconnectin-3 and ROGDI localize intracellular regions rich in V-ATPases. Identifying ROGDI as a novel Rabconnectin-3 subunit is a substantial step forward in our understanding of Rabconnectin-3 and how it influences V-ATPase activity.
    • Research on Health Topics Communicated through TikTok: A Systematic Review of the Literature

      Sattora, Emily A.; Ganales, Brian C.; Pierce, Morgan E.; Wong, Roger (MDPI, 2024-09-21)
      TikTok has more than 1.5 billion users globally. Health and wellness content on the application increased by more than 600% in 2021. This systematic review seeks to summarize which fields within medicine have embraced researching health communication on the TikTok platform and the most common measures reported within this literature. Research questions include what categories of health topics on TikTok are investigated in the literature, trends in topics by year, and types of outcomes reported. Embase, CINAHL, Scopus, and Ovid MEDLINE databases were searched in March 2024. Eligible studies met four criteria: (1) investigated human health topics on TikTok; (2) conducted in the United States; (3) published in English; and (4) published in a peer-reviewed journal. Of the 101 included studies, 50.5% (N = 51) discussed non-surgical specialties, 9.9% (N = 10) discussed topics within surgery, and 11.9% (N = 12) discussed COVID-19. The number of papers referencing non-surgical topics spiked in 2023, and no increase was seen in the number of COVID-19 papers over time. Most papers reported a number of interactions, and papers about mental health were least likely to report accuracy. Our findings highlight several health topics with a wide breadth of research dedicated to them, such as dermatology and COVID-19, and highlight areas for future research, such as the intersection of cancer and TikTok. Findings may be influential in the fields of medicine and healthcare research by informing health policy and targeted prevention efforts. This review reveals the need for future policies that focus on the role and expectations of the healthcare worker in health communication on social media. Implications for clinical practice include the need for providers to consider an individual's perception of health and illness, given the wide variety of information available on social media applications such as TikTok. This review was pre-registered on PROSPERO (CRD42024529182).
    • Role of Cytoreductive Nephrectomy in Metastatic Clear Cell Renal cell Carcinoma in the Era of immunotherapy: An Analysis of the National Cancer Database

      Niforatos, Stephanie; Arunachalam, Swathi; Jamaspishvili, Tamara; Wong, Roger; Bratslavsky, Gennady; Jacob, Joseph; Ross, Jeffrey; Shapiro, Oleg; Goldberg, Hanan; Basnet, Alina; et al. (Elsevier, 2024-09-13)
      Background: The effectiveness of the clinical outcome of CN (Cytoreductive Nephrectomy) in cases of mccRCC (Metastatic Clear Cell Renal cell Carcinoma) is still uncertain despite two trials, SURTIME and CARMENA. These trials, conducted with Sunitinib as the standard treatment, did not provide evidence supporting the use of CN. Methods: We queried the NCDB for stage IV mccRCC patients between the years of 2004 to 2020, who received (immunotherapy) IO with or without nephrectomy. Overall survival (OS) was calculated among three groups of IO alone, IO followed by CN (IOCN), CN followed by IO (CNIO). Cox models compared OS by treatment group after adjusting for sociodemographic, health, and facility variables. Results: From 1,549,101 renal cancer cases, 7983 clear and nonclear cell renal cell carcinoma cases were identified. After adjusting for sociodemographic and health covariates, patients who received IO followed by CN or CN followed by IO had a respective 64% (adjusted Hazard Ratio [aHR] = 0.36, 95% CI = 0.30-0.43, P = .006] and 47% (aHR = 0.53, 95% CI = 0.49-0.56, P = .001) mortality risk reduction respectively compared to patients who received IO alone. Compared to White adults, individuals who identified as Black exhibited 17% higher risk mortality (aHR = 1.17, 95% CI = 1.06-1.30, P = .002). Patients who received CN prior to IO had a 59% associated mortality risk compared to patients who received IO followed by CN who had a lower risk, 35.7% (P < .001). Conclusions: Patients receiving CN regardless of sequence with IO did better than IO alone in this national registry-based adjusted analysis for mccRCC. Presently available data indicates that the combination of CN and IO holds promise for enhancing clinical results in patients with mRCC.
    • Imbalanced specialty representation of USMLE and NBME test writers

      Mahoney, Mary T.; Linkowski, Lauren C.; Mix, Michael D.; Wong, Roger; Sim, Austin J.; Hoffe, Sarah E.; Sura, Karna T. (Springer Nature, 2024-09-09)
      Purpose: The United States Medical Licensing Examination (USMLE) is an examination series required for allopathic physician licensure in the United States (US). USMLE content is created and maintained by the National Board of Medical Examinations (NBME). The specialty composition of the USMLE and NBME taskforce members involved in the creation of examination content is currently unknown. Methods: Using the 2021 USMLE and 2021 NBME Committees and Task Forces documents, we determined each member's board-certified primary specialty and involvement in test material development committees who we dubbed "test writers". Total active physicians by primary specialty were recorded from the 2020 Physician Specialty Data Report published by the Association of American Medical Colleges (AAMC). Descriptive statistics and chi-square analysis were used to analyze the cohorts. Results: The USMLE and NBME test writer primary specialty composition was found to be significantly different compared to the US active physician population (USMLE χ2 [32]=172, p<.001 and NBME χ2 [32]=200, p<.001). Only nineteen specialties were represented within USMLE test writers, with three specialties being proportionally represented. Two specialties were represented within NBME test writers. Obstetrics and Gynecology physicians were proportionally represented in USMLE but not within NBME test writers. Internal Medicine (IM) accounts for the largest percentage of all USMLE test writers (60/197, 30%) with an excess representation of 31 individuals. Conclusions: There is an imbalance in the specialty representation of USMLE and NBME test writers compared to the US active physician population. These findings may have implications for the unbiased and accurate portrayal of topics in such national examinations; thus, future investigation is warranted.
    • Human cytomegalovirus (HCMV) exploits heat-shock transcription factor 1 (HSF1) to promote viral replication: a potential novel antiviral target to combat HCMV infection

      Dilruba, Akter (2024)
      Human cytomegalovirus (HCMV) is a highly prevalent beta-Herpesviridae virus infecting almost 80-90 % of the world population. Though HCMV infection is typically asymptomatic, it can cause significant morbidity and mortality among immunocompromised individuals. Because of its obligate intracellular nature, HCMV modulates the cellular environment to promote infection. HCMV activates different cellular responses and signaling pathways to facilitate a favorable state for viral replication. During the lytic cycle of HCMV infection, viral entry, and replication inside the cell initiate stress response due to nutrient deficiency, energy depletion, hypoxia, and proteotoxic stress. Stress responses are designed to sense the damage, initiating a cascade of events to survive the stress. Several studies showed that HCMV usurps components of heat shock-stress response (HSR) to mitigate stress-associated damage and promote viral gene expression and replication. In this study, we found that HCMV infection in fibroblast cells induces a unique biphasic activation of heat shock transcription factor 1 (HSF1), a master transcription factor that is activated in response to heat-induced proteotoxic stress. HCMV binding to the integrin-ᵝ receptor activates HSF1 through Src- kinases. Importantly, HCMV infection drives the translocation of HSF1 into the infected cell nucleus. During canonical activation of HSF1, nuclear HSF1 binds to the specific sequence on the genome called heat shock element (HSE) and initiates transcription of a wide variety of stress-related genes. Interestingly, HCMV also utilizes this master transcription factor by harboring HSEs on major immediate early promoter (MIEP) to regulate viral immediate early (IE) gene expression. We found inhibition of HSF1 with a novel anti-HSF1 targeting drug SISU102 (Direct Targeted HSF1 InhiBitor) attenuated IE protein expression, indicating that the HSF1 regulates HCMV lytic replication. Additionally, inhibition of HSF1 reduced late (L) gene expression and subsequent viral progeny production. To explore HSF1 as a potential in vivo anti-HCMV target, we employed a murine model involving the subcutaneous transplantation of human skin into athymic nude mice. Treatment with SISU102 significantly diminishes viral replication in skin xenografts compared to the vehicle-treated group, indicating HSF1 as a possible cellular protein target for HCMV antiviral therapy. Overall, our data suggest that HCMV infection rapidly activates HSF1 during viral binding and entry, driving nuclear localization to promote lytic replication, which can be exploited as an antiviral strategy.
    • Effectiveness of Artificial Intelligence Technologies in Cancer Treatment for Older Adults: A Systematic Review

      Obimba, Doris C.; Esteva, Charlene; Nzouatcham Tsicheu, Eurika N.; Wong, Roger (MDPI, 2024-08-23)
      Background: Aging is a multifaceted process that may lead to an increased risk of developing cancer. Artificial intelligence (AI) applications in clinical cancer research may optimize cancer treatments, improve patient care, and minimize risks, prompting AI to receive high levels of attention in clinical medicine. This systematic review aims to synthesize current articles about the effectiveness of artificial intelligence in cancer treatments for older adults. Methods: We conducted a systematic review by searching CINAHL, PsycINFO, and MEDLINE via EBSCO. We also conducted forward and backward hand searching for a comprehensive search. Eligible studies included a study population of older adults (60 and older) with cancer, used AI technology to treat cancer, and were published in a peer-reviewed journal in English. This study was registered on PROSPERO (CRD42024529270). Results: This systematic review identified seven articles focusing on lung, breast, and gastrointestinal cancers. They were predominantly conducted in the USA (42.9%), with others from India, China, and Germany. The measures of overall and progression-free survival, local control, and treatment plan concordance suggested that AI interventions were equally or less effective than standard care in treating older adult cancer patients. Conclusions: Despite promising initial findings, the utility of AI technologies in cancer treatment for older adults remains in its early stages, as further developments are necessary to enhance accuracy, consistency, and reliability for broader clinical use.
    • Microbiota Colonization Dynamics Dictate Systemic IgA

      Harris, Joshua (2024-08-22)
      Evolution of the mammalian gut is intimately linked with the microbes that inhabit this space. Immunological development of gastrointestinal and systemic tissues is fundamentally dependent on stimulation by symbiotic microorganisms. In some cases, the same species that are critical for host immunity display pathogenic qualities when homeostasis is disrupted. Bacteroides fragilis is one such species with numerous symbiotic and pathogenic characteristics. This thesis explores the generation of B. fragilis-specific systemic IgA and the role of this response in protecting the host from B. fragilis pathogenicity. Induction of systemic IgA specific to B. fragilis requires exposure of this bacterium to small intestinal Peyer's patches and results in migration of newly generated IgA plasma cells to systemic tissues. Colonization dynamics of B. fragilis in mouse models with endogenous gut microbiota revealed that the magnitude of systemic IgA responses occurs in a dose-dependent fashion. Finally, a framework for establishing B. fragilis colonization and subsequent immune modulation within a highly diverse intestinal ecosystem was developed.
    • Investigating the role of formin FHOD3 during myofibrillogenesis in embryonic chick cardiomyocytes

      Sausville, Damien (2024-08-05)
      Formins are major actin polymerizing proteins which act via the FH2 domain to promote actin nucleation and polymerization, as well as the FH1 domain to accelerate FH2 mediated actin elongation. FHOD3 is a formin that has been shown to be expressed predominantly in the heart and is critical for myofibril maturation during development in mice. FHOD3 has been shown to localize where actin filaments overlap myosin filaments within the sarcomeres of mice, rat, and human induced pluripotent stem-cell derived cardiomyocytes, flanking both sides of the M-line in the sarcomere. However, the role of FHOD3 in the myofibrillogenesis and the timing of FHOD3's activity in myofibrils has yet to be determined. Using RT-PCR, I successfully identified expression of at least two different isoforms of FHOD3 within heart tissue, matching to predicted isoforms X5 and X6. I also identified two chemically conserved regions within the FHOD3 amino acid sequence that are related to the cardiac FHOD3 isoform's localization to myofibrils. Using immunofluorescence microscopy and western blotting I found that FHOD3 is present within embryonic chick cardiomyocytes and that the localization of FHOD3 matches prior reports. FHOD3 was determined to be transiently expressed at significantly higher rates on Days 3 and 4 of culture in cardiomyocyte myofibrils. 90% of measured sarcomeres containing FHOD3 had a Z-line to Z-line length ranging from 1.4-1.9 µm, suggesting not only a length-dependent role of FHOD3, but a myofibril maturity dependent localization of FHOD3. These observations illustrate that FHOD3 likely does not have a function in the initiation of myofibrillogenesis but may instead have a role in the maturation and elongation of sarcomeres. The transient nature observed also suggests that FHOD3 may be localized within the sarcomere only as needed. Knockdowns of FHOD3 performed with shRNAs showed no indication of knockdown causing myofibrillar disruption. Knockdowns of FHOD3 using DsiRNAs were statistically inconclusive for knockdown occurring but did have an upwards nonsignificant trend in the percentage of myofibril disruption in cardiomyocytes.