Wilkens, Stephan; Stam, Nicholas J (2020-04-10)
      Vacuolar ATPase (V-ATPase) is a large multisubunit enzyme that acidifies subcellular organelles and the extracellular space. Its activity is regulated by reversible disassembly, causing V-ATPase dissociation into soluble V1-ATPase and membrane-integral Voproton channel sectors.The goal of this thesis project was to observethe yeast Voin a physiologically relevant, auto-inhibited state, i.e. in its form dissociated from the ATPase sector, V1, in order to better visualizethe closed pore and to identify testable hypotheses on why the pore remains closed following dissociation from V1. Towards this aim we present two chapters:In Chapter 1, we detail a single-particle negative stain EM study of lipid nanodisc reconstituted Vo,which suggesteddissociated Vois halted in theso-called rotational state 3 of the holo-enzyme.We performed site directed mutagenesis and binding studies of subunits aand dto test and validate this hypothesis.In Chapter 2,we further detaillipid nanodisc reconstitutedVoin a high-resolutioncryoEM structure,confirmingour earlier identification of Voresting in rotational state 3, andproviding structural information of the sectorat the amino acid level. Through this work we proposed apossible mechanism for transmembrane proton transport in the V-ATPaseandidentifieda new subunit member of Vo, assembly factor Voa1.The studies shown here highlight the potential of lipid nanodisc reconstitution of membrane protein complexes, give insight into a conformational mismatch between autoinhibited V1and halted Vowith the implication that the mismatch may serve to prevent unintended reassembly of V-ATPase upon activity silencing, and propose a chemical basis for transmembrane proton transport in the Voproton pore.
    • Neuropsychological intra-individual variability explains unique genetic variance of ADHD and shows suggestive linkage to chromosomes 12, 13, and 17

      Frazier-Wood, Alexis C.; Bralten, Janita; Arias-Vasquez, Alejandro; Luman, Marjolein; Ooterlaan, Jaap; Sergeant, Joseph; Faraone, Stephen V.; Buitelaar, Jan; Franke, Barbara; Kuntsi, Jonna; et al. (Wiley, 2012-01-05)
      Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neuropsychiatric disorder that is usually accompanied by neuropsychological impairments. The use of heritable, psychometrically robust traits that show association with the disorder of interest can increase the power of gene-finding studies. Due to the robust association of intra-individual variability with ADHD on a phenotypic and genetic level, intra-individual variability is a prime candidate for such an attempt. We aimed to combine intra-individual variability measures across tasks into one more heritable measure, to examine the relatedness to other cognitive factors, and to explore the genetic underpinnings through quantitative trait linkage analysis. Intra-individual variability measures from seven tasks were available for 238 ADHD families (350 ADHD-affected and 195 non-affected children) and 147 control families (271 children). Intra-individual variability measures from seven different tasks shared common variance and could be used to construct an aggregated measure. This aggregated measure was largely independent from other cognitive factors related to ADHD and showed suggestive linkage to chromosomes 12q24.3 (LOD ¼ 2.93), 13q22.2 (LOD ¼ 2.36), and 17p13.3 (LOD ¼ 2.00). A common intra-individual variability construct can be extracted from very diverse neuropsychological tasks; this construct taps into unique genetic aspects of ADHD and may relate to loci conferring risk for ADHD (12q24.3 and 17p13.3) and possibly autism (12q24.3). Given that joining of data across sites boosts the power for genetic analyses, our findings are promising in showing that intra-individual variability measures are viable candidates for across site analyses where different tasks have been used.
    • The new neuropsychiatric genetics

      Faraone, Stephen V.; Smoller, J.W.; Pato, C.N.; Sullivan, P.; Tsuang, M.T. (Wiley, 2008-01-05)
    • NIMH genetics initiative millennium schizophrenia consortium: Linkage analysis of African-American pedigrees

      Kaufmann, Charles A.; Suarez, Brian; Malaspina, Dolores; Pepple, John; Svrakic, Dragan; Markel, Paul D.; Meyer, Joanne; Zambuto, Christopher T.; Schmitt, Karin; Matise, Tara Cox; et al. (Wiley, 1998-07-10)
      The NIMH Genetics Initiative is a multi-site collaborative study designed to create a national resource for genetic studies of complex neuropsychiatric disorders. Schizophrenia pedigrees have been collected at three sites: Washington University, Columbia University, and Harvard University. This article—one in a series that describes the results of a genome-wide scan with 459 short-tandem repeat (STR) markers for susceptibility loci in the NIMH Genetics Initiative schizophrenia sample—presents results for African-American pedigrees. The African-American sample comprises 30 nuclear families and 98 subjects. Seventy-nine of the family members were considered affected by virtue of having received a DSMIII-R diagnosis of schizophrenia (n = 71) or schizoaffective disorder, depressed (n = 8). The families contained a total of 42 independent sib pairs. While no region demonstrated evidence of significant linkage using the criteria suggested by Lander and Kruglyak, several regions, including chromosomes 6q16-6q24, 8pter-8q12, 9q32-9q34, and 15p13-15q12, showed evidence consistent with linkage (P = 0.01–0.05), providing independent support of findings reported in other studies. Moreover, the fact that different genetic loci were identified in this and in the European-American samples, lends credence to the notion that these genetic differences together with differences in environmental exposures may contribute to the reported differences in disease prevalence, severity, comorbidity, and course that has been observed in different racial groups in the United States and elsewhere. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 81:282–289, 1998. © 1998 Wiley-Liss, Inc.
    • The p53-Zn2+ Energy Landscape and Metallochaperone Hypothesis

      Loh, Stewart; Blanden, Adam (2017)
      p53 is a tumor suppressor protein found mutated in essentially half of human cancers, and dysfunctional in nearly all human cancers. Each DNA-binding domain of the protein contains a critical tetrahedrally coordinated Zn2+. In this work, we present a quantitative thermodynamic model describing the energetics of the p53-Zn2+ interaction, as well as the mechanism of action of a new class of therapeutic compounds we call synthetic zinc metallochaperones (ZMC) that restore proper structure and function to many mutant p53s by delivering Zn2+ to the protein in the cell. We combine recombinant protein expression and in vitrobiophysical characterization with cell biology, molecular biology, medicinal chemistry, and live cell imaging to address these issues. Our model for both the mechanism of action of ZMCs and the p53-Zn2+interaction are broadly based on the Metallochaperone Hypothesis originally proposed by our group in 2010. We find that the core tenants of the Metallochaperone Hypothesis are accurate, and have expanded that model to quantitatively describe the link between p53-Zn2+ binding and protein stability noted for decades in the field. We find that at physiological temperature and Zn2+ concentrations, wild-type p53 has a folding energy of ~0 kcal mol-1, and as such is exquisitely sensitive to inactivation by mutation, and rapidly changes the fraction folded in response to changes in Zn2+ concentration. We demonstrate that ZMCs are ionophores, transport Zn2+ from the extracellular space into cells, and rescue mutant p53 by increasing the intracellular free Zn2+ concentration. This increase in Zn2+ stabilizes the mutant proteins via the same mechanism previously described for substrate stabilization of enzymes, and is only seen in a "Goldilocks Zone" of Zn2+ concentrations and ZMC Kds. This presents a fundamentally new way to interact with and reactivate mutant p53s, and raises questions about the potential for biological exploitation of this interaction for signaling or other functions.
    • Patterns of Psychopathology and Dysfunction in High-Risk Children of Parents With Panic Disorder and Major Depression

      Biederman, Joseph; Faraone, Stephen V.; Hirshfeld-Becker, Dina R.; Friedman, Deborah; Robin, Joanna A.; Rosenbaum, Jerrold F. (American Psychiatric Association Publishing, 2001-01)
      Objective: The purpose of the study was to evaluate 1) whether an underlying familial predisposition is shared by all anxiety disorders or whether specific risks are associated with specific disorders, and 2) whether panic disorder and major depression have a familial link. Method: The study compared four groups of children: 1) offspring of parents with panic disorder and comorbid major depression (N=179), 2) offspring of parents with panic disorder without comorbid major depression (N=29), 3) offspring of parents with major depression without comorbid panic disorder (N=59), and 4) offspring of parents with neither panic disorder nor major depression (N=113). Results: Parental panic disorder, regardless of comorbidity with major depression, was associated with an increased risk for panic disorder and agoraphobia in offspring. Parental major depression, regardless of comorbidity with panic disorder, was associated with increased risks for social phobia, major depression, disruptive behavior disorders, and poorer social functioning in offspring. Both parental panic disorder and parental major depression, individually or comorbidly, were associated with increased risk for separation anxiety disorder and multiple (two or more) anxiety disorders in offspring. Conclusions: These findings confirm and extend previous results documenting significant associations between the presence of panic disorder and major depression in parents and patterns of psychopathology and dysfunction in their offspring.
    • Pediatric mania: a developmental subtype of bipolar disorder?

      Biederman, Joseph; Mick, Eric; Faraone, Stephen V.; Spencer, Thomas; Wilens, Timothy E; Wozniak, Janet (Elsevier BV, 2000-09)
      Despite ongoing controversy, the view that pediatric mania is rare or nonexistent has been increasingly challenged not only by case reports, but also by systematic research. This research strongly suggests that pediatric mania may not be rare but that it may be difficult to diagnose. Since children with mania are likely to become adults with bipolar disorder, the recognition and characterization of childhood-onset mania may help identify a meaningful developmental subtype of bipolar disorder worthy of further investigation. The major difficulties that complicate the diagnosis of pediatric mania include: 1) its pattern of comorbidity may be unique by adult standards, especially its overlap with attention-deficit/hyperactivity disorder, aggression, and conduct disorder; 2) its overlap with substance use disorders; 3) its association with trauma and adversity; and 4) its response to treatment is atypical by adult standards. Biol Psychiatry 2000;48: 458–466 © 2000 Society of Biological Psychiatry.
    • Pediatric mania: a developmental subtype of bipolar disorder?

      Biederman, Joseph; Mick, Eric; Faraone, Stephen V.; Spencer, Thomas; Wilens, Timothy E; Wozniak, Janet (Elsevier BV, 2000-09)

      Mollapour, Mehdi; Dushukyan, Natela (2018)
      Protein Phosphatase 5 (PP5) is a serine/threonine phosphatase known to regulate many essential cellular functions including steroid hormone signaling, stress response, proliferation, apoptosis, and DNA repair. PP5 is a knownco-chaperone of the molecular chaperone heat shock protein 90 (Hsp90), and its regulation of Hsp90aidswiththe proper activation of Hsp90 clients and withsteroid hormone signaling.Hsp90 is also one of the strongest activators of PP5, as it releases the auto-inhibition of PP5 by interacting with the N-terminal tetratricopeptide repeat (TPR) domain of PP5. Our lab has recently shown that PP5 is phosphorylated at T362, and that this phosphorylation acts as an “on switch” resultingin the hyperactivation of PP5. Misregulation of this key phosphatase has been shown to aid in the tumor progression of ER-dependent and independent breast cancer. Elevated PP5 levels have also been linked to colorectalcancer, hepatocellular carcinoma (HCC), lymphoma, and prostate cancer. The work presented here reveals the pro-survival role that PP5 plays in kidney cancer. Clear cell renal cell carcinomas (ccRCC) are most often driven by mutations in the von Hippel-Lindau tumor suppressor (VHL). The data in this thesis shows that VHL binds and multi mono-ubiquitinates PP5 at two lysine residues K185 and K199. This post-translational modification negatively regulates PP5 likean “off switch” and ultimately leads to its degradation bythe proteasome. Mutations in the VHLgene that result in inactive mutants or a lack of VHL protein expression lead to ccRCC tumors. The data in this thesis shows that these VHL-nulltumors become dependent on elevated levels of PP5, and that both PP5 knockdown and inhibition lead to cancer cell death. The data further shows that the decrease in PP5 activity in VHL-null cells results in the induction of the extrinsic apoptotic pathway with a dramatic increase in the cleavage of PARP and caspases 3, 7, and 8.
    • Placebo and nocebo responses in randomised, controlled trials of medications for ADHD: a systematic review and meta-analysis

      Faraone, Stephen V.; Newcorn, Jeffrey H.; Cipriani, Andrea; Brandeis, Daniel; Kaiser, Anna; Hohmann, Sarah; Haege, Alexander; Cortese, Samuele (Springer Science and Business Media LLC, 2021-05-10)
      The nature and magnitude of placebo and nocebo responses to ADHD medications and the extent to which response to active medications and placebo are inter-correlated is unclear. To assess the magnitude of placebo and nocebo responses to ADHD and their association with active treatment response. We searched literature until June 26, 2019, for published/ unpublished double-blind, randomised placebo-controlled trials (RCTs) of ADHD medication. Authors were contacted for additional data. We assessed placebo effects on efficacy and nocebo effects on tolerability using random effects metaanalysis. We assessed the association of study design and patient features with placebo/nocebo response. We analysed 128 RCTs (10,578 children/adolescents and 9175 adults) and found significant and heterogenous placebo effects for all efficacy outcomes, with no publication bias. The placebo effect was greatest for clinician compared with other raters. We found nocebo effects on tolerability outcomes. Efficacy outcomes from most raters showed significant positive correlations between the baseline to endpoint placebo effects and the baseline to endpoint drug effects. Placebo and nocebo effects did not differ among drugs. Baseline severity and type of rating scale influenced the findings. Shared non-specific factors influence response to both placebo and active medication. Although ADHD medications are superior to placebo, and placebo treatment in clinical practice is not feasible, clinicians should attempt to incorporate factors associated with placebo effects into clinical care. Future studies should explore how such effects influence response to medication treatment. Upon publication, data will be available in Mendeley Data: PROSPERO (CRD42019130292).

      Glatt, Stephen J.; Hess, Jonathan (2017)
      In1899, psychiatrist Emil Krapaelin introduced a separation between schizophrenia (SZ) and bipolar disorder (BD), formerly “dementia praecox” and“manic-depressive disorder”, which came to be known as the Krapaelinian dichotomy, and has prevailed over the past century (Kraepelin, 1904). Although Emil Krapaelin postulated that these are distinct entities, multiple converging lines of evidence suggest that SZ and BD have a shared etiology: (1) first-degree relatives of a SZ-affected individual are at higher risk for BD than the general population, and vice versa (Lichtenstein et al., 2009), (2) recent work from genome-wide association studies (GWAS) and rare variant studies revealed that SZ and BD share common risk genes, suggesting that these disorders share a set of molecular substrates, and (3) second-generation antipsychotics exhibit effectiveness in ameliorating psychosis and mania (Buckley, 2008). SZ and BD are highly heritable mental illnesses with a lifetime prevalence near 1%. Onset typically occurs in late adolescence to early adulthood. Their etiology is complex and multi-factorial. SZ and BD are among the leading causes of disability around the globe(Global Burden of Disease Study 2013 Collaborators, 2015). There isa constellation of symptoms related toSZ, including hallucinations (e.g., auditory, olfactory, visual), delusions (e.g., persecutions, grandiosity), thought disturbances, affective flattening, and anhedonia. SZ and BD have clinical resemblances like psychosis, though this is more widely recognized as a hallmark of SZ. The core feature of BD is extreme changes in mood ranging from periods of mania followed by severe depression, which is also referred to as “switching”. Drugs for treating SZ and BD have changed very little over the past 50 years, and those that are used today are not always effective and can elicit severe side effects. SZ and BD research is evolving rapidly but our understanding of these disorders is still in its infancy. One of the major advances in the field has been the “big data” revolution. Technological advances have been a critical driving force of this revolution, including emergence of DNA microarray chips for high-throughput genome-wide genotyping and gene expression profiling. These technologies became widely adopted in psychiatry and led to a proliferation of genome-and transcriptome-wide studies in psychiatry to aid in the discovery of novel genes and pathways related to mental illness. Despite SZ and BD having a strong genetic basis, identifying susceptibility genes was a significant challenge. Combining data across laboratories became a fundamental strategy to overcome inherent weaknesses with statistical power and methodological biases, which has proven be to a fruitful strategy for GWAS (Cross Disorder Group of the Psychiatric Genomics Consortium, 2013; Ripke et al., 2014; Ruderfer et al., 2013; Sklar et al., 2011). Yet, a robust methodological and statistical framework for analyzing combined collections of gene expression data has been lacking in psychiatry. Microarray studies of SZ and BD suffered from low statistical power and drawbacks that affected their reproducibility (Draghici, Khatri, Eklund, & Szallasi, 2006; Evans, Watson, & Akil, 2003). Combining gene expression data from numerous sources and addressing methodological issues may help to uncover reliable molecular associations. Even though the relevance of gene expression to physiology is not always clear, gene expression abnormalities in mental illness can provide fundamental insight into gene regulatory networks in brain and peripheral tissues, and provide a framework for interpreting genomics data. Integrating findings between GWAS and gene expression studies has the potential to elucidate the etiological overlap of SZ and BD. Moreover, gene expression signatures of mental illnesses may have biomarker utility and set up a foundation for identifying better drug targets. Data sharing is now a common place. Although microarrays are gradually being replaced by more sensitive and precise technologies such as next-generation sequencing, data harmonizing will be a pervasive issue unless dealt with now.In this dissertation, I present two review papers describing the current state of SZ and BD genetics research followed by three primary research studies that I performed to answer these prevailing questions: (1) what are the genes, pathways, and regulatory elements that relate to risk for SZ and BD, and are these similar or different across disorders? (2) what genes and pathways are abnormally expressed in SZ and BD, and might these differences converge with genomic evidence? (3) can differences between SZ and BD reflected in gene expression profiles offer biomarker utility and a basis for developing disorder-specific classifiers?My primary hypothesis for this work is SZ and BD exhibit overlapping abnormalities across pathways related to neurodevelopment, neurotransmission, and immunity/cellular response to stressors; furthermore, these abnormalities are relevant for pathophysiology. My dissertation work encapsulates the development of methodologies and computational tools to analyze large “poly-omics” data sets, i.e., jointly analyzing genomic, epigenomic, and transcriptomic data to identify abnormalities gene expression regulation and molecular substrates that are common between and unique to SZ and BD. My work uncovered convergent evidence of dysregulation among genes, pathways, and regulatory molecules associated with SZ and BD. Major outcomes of this thesis may help to lay the groundwork for causal inference of the effect of genetic variants on cellular phenotypes, biological sub-typing of mental illness through gene expression profiling, and rational drug design.

      Mollapour, Mehdi; Dunn, Diana (2017)
      Heat Shock Protein-90 (Hsp90) is a molecular chaperone critical to thestability and activity of over 200 proteins known as “clients” including many oncogenes. Hsp90 chaperone function is linked to its ability to hydrolyze ATP and Hsp90 drugs inhibit its activity leading to the degradation of clients, thus making Hsp90 an attractive target for cancer therapy. The Hsp90 chaperone cycle is fine-tuned by another group of proteins called co-chaperones. They modifythe cycle, allowing Hsp90 to chaperone different pools of clients. Post-translational modifications (PTM) of Hsp90 and its co-chaperones can also regulate the chaperone cycle, and affect Hsp90 drug sensitivity. Here it is shownthat c-Abl kinase phosphorylates Y223in the co-chaperoneAha1, promotingits interaction with and stimulation of Hsp90 ATPase activity. Pharmacologic inhibition of c-Abl prevents the Aha1-Hsp90 interaction thereby, hypersensitizing cancer cells to Hsp90 inhibitors.Another co-chaperone of Hsp90, protein phosphatase-5 (PP5), mediates thede-phosphorylation of the co-chaperone Cdc37which is an essentialprocessfor the activation of kinase clients. The crystal structure of phospho-Cdc37 bound to the catalytic domain of PP5revealed elements of substrate specificity within the phosphatase cleft. Hyperactivityandhypoactivity of PP5 increasedHsp90 binding to its inhibitor, providing insight into increasingthe efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors.PP5 is autoinhibited by intramolecular interactions that can be activated by anumber of cellular factors, includingHsp90. Casein kinase-1δ (CK1δ)-mediated phosphorylation of T362-PP5, was identified as an integral step for PP5 activation, independent of binding to Hsp90. Additionally, the tumor suppressor von Hippel-Lindau (VHL), the substrate recognition component of the VCB-E3-ubiquitin ligase, was found to interact with and multi-monoubiquitinate K185/K199-PP5 for proteasomal degradationin an oxygen-independent manner. Furthermore, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines or patient tumors exhibit elevated PP5 levels. Down-regulation of PP5 caused apoptosis inccRCC cells, suggesting a prosurvival role for PP5 in ccRCC.Thisevidence suggests that inhibition of the enzymes that target and catalyze the PTM of Hsp90 and co-chaperones can act synergistically with Hsp90 inhibitors, providingnovel therapeutic strategiesto enhance the efficacy of Hsp90 inhibitors in cancer cells.

      Youngentob, Steven; Harrison, Danielle (2016)
      Human studies illustrate that alcohol exposure while breastfeeding produces a memory of the alcohol scent and modifies behavioral responses to the odor of the drug. The memory and modified behavioral response to alcohol odor suggest that the addictive attributes of alcohol may contribute to patterns of use that increases the risk for alcohol abuse later in life. There is a growing body of evidence that demonstrates prenatal alcohol exposure produces a memory and modified behavioral response to alcohol odor that persists into adolescence, and contributes to alcohol abuse. Given that both postnatal and prenatal alcohol exposure has lasting effects on infants, this study investigated whether rats exposed to alcohol while breastfeeding have a prolonged memory and modified behavioral response to alcohol odor. Long-Evans Hooded rat pups were exposed to alcohol during breastfeeding via the dams' liquid diet. Control animals received ad lib access to an isocaloric, iso-nutritive liquid diet after delivery of their litter up to weaning. To control for effects of malnutrition pair-fed animals were given a control liquid diet equivalent in quantity to the amount their matched animal provided with an alcohol diet consumed the day before. When litters reached adolescence, the behavioral and neurophysiological responses to alcohol odor in a male and female animal from each litter was examined. Relative to controls, animals exposed to alcohol postnatally displayed an altered breathing pattern response to alcohol odor specifically, and an altered breathing pattern and neurophysiological response to novel odorants. The findings of this study builds on the growing body of research that shows the consequences of postnatal alcohol exposure.
    • Preclinical Development of Anti-Cancer Drugs from Natural Products.

      Huang, Ying; Sun, Qing (2014)
      Cancer has been and will continue to be the common concern in the United States and worldwide. As a conventional treatment to fight cancer, new anti-cancer drugs with more efficiency and less toxicity are extremely required. In this study, we have identified two novel compounds with anti-cancer properties from two traditional Chinese medicinal plants. One is Lappaol F that was extracted from the seeds of the plant Actium Lapp L., which has been used in China for centuries as anti-viral and anti-bacterial medicine. Another is M-9 that was extracted from the stem of Marsdenia tenacissima,a plant that has been applied to treat inflammation and cancer in China. Our results showed that Lappaol F inhibited cancer cell growth by regulating a series of cell cycle related proteins and inducing cell cycle arrest at G1 and/or G2 phase. p21 played a critical role in Lappaol F-induced cyclin B1 and cyclin-dependent kinase 1 (CDK1) suppression as well as G2arrest. Lappaol F also induced cell death in a number of cancer cells through caspases activation. Lappaol F-mediated cell growth inhibition was p53-independent. Notably, results from animal studies showed that Lappaol F effectively inhibited tumor growth in vivo, while being well tolerated by the mice. Thus, Lappaol F has a strong potential to be developed as a novel anti-cancer chemotherapeutic. Our studies showed that M-9 successfully sensitized several tumor cells but not non-tumorigenic cells to paclitaxel (Taxol) treatment. Additionally, M-9 reversed chemotherapeutic resistance in a number of multidrug resistant cells. Further results suggested that M-9 functioned, at least to a certain extent, via inhibiting drug efflux by competitively binding to P-glycoprotein (P-gp), a protein that accounts for multidrug resistance. Importantly, results from the in vivostudies demonstrated that M-9 strongly enhanced Taxol-induced growth suppression against xenografts derived from HeLa cells. Moreover, mice tolerated the treatment of Taxol and M-9 well. Therefore, M-9 is a novel chemosensitizer candidate to overcome P-gp-mediated multidrug resistance. Taken together, our studies provide a solid basis for further development of these two compounds as anti-cancer remedies.
    • Psychoactive substance use disorders in adults with attention deficit hyperactivity disorder (ADHD): effects of ADHD and psychiatric comorbidity

      Biederman, J; Wilens, T; Mick, E; Milberger, S; Spencer, T J; Faraone, Stephen V. (American Psychiatric Association Publishing, 1995-11)
      Objective: The authors evaluated the association between attention deficit hyperactivity disorder (ADHD) and psychoactive substance use disorders in adults with ADHD, attending to comorbidity with mood, anxiety, and antisocial disorders. It was hypothesized that psychiatric comorbidity would be a risk factor for psychoactive substance use disorders. Method: Findings for 120 referred adults with a clinical diagnosis ofchildhood-onset ADHD were compared with those for non-ADHD adult comparison subjects (N=268). All childhood and adult diagnoses were obtained by structured psychiatric interviews for DSM-III-R. Rı ıiiIt.ıi There was a significantly higher lifetime risk for psychoactive substance use disorders in the ADHD adults than in the comparison subjects (52% versus 27%). Although the two groups did not differ in the rate ofalcohol use disorders, the ADHD adults had significantly higher rates ofdrug and drug plus alcohol use disorders than the comparison subjects. ADHD significantly increased the risk for substance use disorders independently ofpsychiatric comorbidity. Antisocial disorders significantly increased the risk for substance use disorders independently ofADHD status. Mood and anxiety disorders increased the risk for substance use disorders in both the ADHD and comparison subjects, but more demonstrably in the comparison subjects. Conclusions: Although psychiatric comorbidity increased the risk for psychoactive substance use disorders in adults with ADHD, by itself ADHD was a significant risk factor for substance use disorders. More information is needed to further delineate risk and protective factors mediating the development of substance use disorders in persons with ADHD.
    • Rab4acontrol over metabolism and mTOR drives disease progression in Systemic Lupus Erythematosus

      Perl, Andras; Huang, Nick (2020-05-15)
      Endosomal trafficking is key to intercellular communication and metabolic regulation of immunological development. Rab4a, an endosomal trafficker, is elevated in lupus T cells and polymorphisms of the Rab4a gene have been linked to disease susceptibility. Here, we report the constitutive activation of Rab4a increases susceptibility and severity to lupus nephritis in the genetic SLE1.2.3. model of lupus and is corrected by the deletion of Rab4a in T cells. Alternatively, in a pristane model of induced autoimmunity, the deletion of Rab4a in T cells magnifies the pulmonary manifestations of diffuse alveolar hemorrhage that is otherwise protected by the constitutive activation of Rab4a. Rab4a mediates these changes through control over mTOR, mitochondrial function and homeostasis, and immunological development. In particular, inactivation of Rab4a in T cells reduces expression of activation signals, mitochondrial mass and electrochemical potential. Alterations to Rab4a activity drives the aberrant development and function of anti-inflammatory regulatory T cells and pro-inflammatory double-negative T cells. These data provide new insights into the regulation of metabolism and immunological development through endosomal trafficking. As such, the targeting of Rab4a is a novel therapeutic approach in the treatment of autoimmune diseases such as lupus, which has lacked new targeted therapeutics for more than half a century.
    • RASD2, MYH9, and CACNG2 Genes at Chromosome 22q12 Associated with the Subgroup of Schizophrenia with Non-Deficit in Sustained Attention and Executive Function

      Liu, Yu-Li; Fann, Cathy Shen-Jang; Liu, Chih-Min; Chen, Wei J.; Wu, Jer-Yuarn; Hung, Shuen-Iu; Chen, Chun-Houh; Jou, Yuh-Shan; Liu, Shi-Kai; Hwang, Tzung-Jeng; et al. (Elsevier BV, 2008-11)
      Background: In a previous linkage study of schizophrenia that included Taiwanese samples, the marker D22S278 (22q12.3) was significantly linked to schizophrenia (p .001). Methods: We conducted fine mapping of the implicated genomic region, with 47 validated single nucleotide polymorphism (SNP) markers around 1 Mb of D22S278, in a Taiwanese sample of 218 pedigrees with at least 2 siblings affected with schizophrenia. We examined the association of these SNPs and their haplotypes with schizophrenia and with subgroups defined by the presence and absence of deficits in sustained attention as assessed by undegraded and degraded continuous performance tests (CPTs). We also examined subgroups defined by deficits in categories achieved in the Wisconsin Card Sort Test (WCST). Results: Three of five candidate vulnerability genes (RASD2, APOL5, MYH9, EIF3S7, and CACNG2), which had marginally significant associations with schizophrenia, had significant associations with schizophrenic patients who did not have deficits in sustained attention on the undegraded CPT (RASD2 gene SNP rs736212; p .0008 with single locus analysis) and the degraded CPT (MYH9 gene haplotype 1-1-1-1 of SNP rs3752463 - rs1557540 - rs713839 - rs739097; p .0059 with haplotype analysis). We also found a significant association for patients who showed no deficits in executive function as measured by categories achieved in the WCST (CACNG2 gene haplotype 2-1-1-1 of SNP rs2267360 - rs140526 - rs1883987 - rs916269; p .0163 with haplotype analysis). Conclusions: The genes RASD2, MYH9, and CACNG2 might be vulnerability genes for neuropsychologically defined subgroups of schizophrenic patients.
    • Rational Design of Protein-Based Biosensors Using Engineered Binding-Induced Conformational Switches

      Loh, Stewart; ZHENG, HUIMEI (2014)
      Biosensor development continues to be driven by the growing need to accurately detect and monitor analytes with many biotechnology, clinical, agriculture, and military applications. With their well-established capacity for molecular recognition, proteins are the go-to choice of binding elements in many conventional sensor designs. Switchable proteins offer the potential of integrating analyte binding and signal transduction within a single molecule, thus reducing the need for complex and expensive detection equipment and opening the door to miniaturization and in vivo applications. The principal challenge is that the majority of natural binding proteins do not undergo a large-scale change in conformation upon target binding. This work describes two complementary protein design strategies for the rational conversion of ordinary binding proteins into ligand induced conformational switches for biosensing purposes. In the first approach, we applied the Alternate Frame Folding (AFF) mechanism to the human sulfiredoxin (hSrx) and the fibronectin (FN3) monobody scaffold towards the creation of an ATP biosensor and a customizable biosensor platform, respectively. In a second novel approach, the Protein Fragment Exchange (FREX) mechanism was demonstrated in a proof-of principle study that converts the FN3 scaffold into a biosensor, capable of genetic encoding and application in mammalian cells. While these designs were based on well established principles of protein folding and thermodynamics, the results obtained from these studies also offer important insights regarding protein sequence-structure-function relationships.
    • Reconstitution and Characterization of RNA Polymerase I Upstream Activating Factor.

      Knutson, Bruce; Smith, Marissa (2018)
      RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is the first and one of the most critical steps in ribosome biosynthesis. Pol I transcription initiation is coordinated by four Pol I factors that include the Upstream Activating Factor (UAF), TATA-binding protein (TBP), Core Factor (CF), and Rrn3. These factors work together to recruit Pol I to the rDNApromoter and to initiate transcription.UAF is a six-subunit complex composed of Rrn9, Rrn5, Uaf30, Rrn10, and histones H3 and H4.To investigate the importance of each UAF subunit in UAF complex formation and complex integrity, we developed a recombinant Escherichia coli-based system to coexpress and purify transcriptionally active UAF complex. Here, we found that no single subunit is required for UAF assembly, including histones H3 and H4. We also demonstrate that histone H3 is able to interact with each UAF-specific subunit. Last, wedetermined the stoichiometry of the subunits of the UAF complex, revealing there are two copies of histoneH3 and one copy of the remaining UAF subunits, including histone H4. Together, our results provide a new model suggesting that UAF contains a hybrid H3–H4 tetramer-like subcomplex.The results from this thesiswill help to reveal key mechanisms in Pol Itranscription activation.