• Characterizing the Role of the Epsilon Subunit in Regulation of the Escherichia coli ATP Synthase.

      Duncan, Thomas; Shah, Naman (2015)
      The F-type ATP synthase is a rotary nanomotor central to cellular energy metabolism in almost all living organisms. In bacteria, the enzyme also plays a role in nutrient uptake and pH regulation underlining its importance. All ATP synthases can be inhibited by ADP, whereas in bacteria, the enzyme is alsoautoinhibitedbyits ε subunit. The inhibition involves a drastic conformationa l change of the C-terminal domain of the ε subunit (εCTD)thatblockscatalytic turnover. Thisregulation by ε is believed to play an important role in maintaining viability of the cell. Recent development in the field of antibiotics has validated ATP synthase as a drug target against pathogenic bacteria. Thus, there is a renewed interest in studying the role of the ε subunit in regulation of the enzyme and exploiting it to develop antimicrobials that can kill pathogenic bacteria. The present work describes advances in our understanding of the regulatory interactions of εCTD in E. coli ATP synthase.In the first approach, we used an optical binding assay to understand the transitions of εCTD between its active and inhibitory conformations.Using different ligands we revealedthe relationship between ADP inhibition and ε inhibition. In the second novel approach, the terminal five amino acids of εCTD were deleted to observe the effects on in vivo and in vitro functions of ATP synthase. The results obtained from these studies advance our understanding of εinhibition inbacteria and also provide a noveltarget within bacterial ATP synthase to obtain antibacterial drugs.
    • Functional Studies of Tumor Suppressor ECRG2 in the Regulation of Cancer Cell Death and Drug Resistance

      Huang, Ying; Lucchesi, Chris (2015)
      Esophageal Cancer Related Gene 2 (ECRG2) is a newer tumor suppressor whose mRNAhas previously been shown to be decreased in multiple human malignanceswhencompared to normal/adjacent tissues.Of importance, ECRG2 has previously been revealedto possess tumor suppressive attributes,including the ability to induce cell death in cancer cells. However, how ECRG2 is able to activate the apoptotic machinery has yet to be elucidated. In the present study,we highlight multiple angles that ECRG2 leverages in order to sensitize cancer cells to apoptosis. Moreover, we report for the first time,that ECRG2 protein expression in lung cancer patientsamples is lost/decreased in upwards of 90% ofthecancer tissues evaluatedcompared to normal tissue. Additionally, a single somatic point mutant found in patient tumor samples, V30E, was shown to lose tumor suppressive abilities and acquired resistance against multiple anticancer drugs. Our results demonstrate that ECRG2is upregulated in response to DNA damage, andis capable of inducing the activation of both caspase cascades (intrinsic and extrinsic) leadingto cancer cell death. We further illustratedthat ECRG2-mediated cell deathwasattributed to a reduction in the levels of apoptosis inhibitor, X chromosome-linked inhibitor of apoptosis protein (XIAP). ECRG2 was revealedto regulate XIAP protein levels via RNA-binding protein,human antigen R(HuR).We further highlight that ECRG2 causes increased HuR ubiquitination,subsequently leading to its degradation. Thus, we demonstrate that ECRG2 sensitizescancer cells to apoptosis through the downregulation of HuR, and consequent downregulation of XIAP. Next, we have identified ECRG2 as a potent positive regulator of death receptor 5 (DR5) gene expression.ECRG2-mediated upregulation of DR5 was shown to be facilitated through the upregulation of tumor suppressor p53 and transcription factors ATF3 and NFⱪB. Together, in a cooperative fashion, increased levelsof p53, ATF3 and NFⱪB stimulateDR5 gene expression. Contrastingly, silencing of ECRG2 not only decreased the levels of NFⱪB and DR5, but also resulted in decreased cancer cell sensitivity to genotoxic stressandTRAIL treatment. Collectively,our work establishes that ECRG2 is capable of inducing apoptosis in cancer cells by increasing the expression of pro-apoptotic proteins, while also negatively influencing anti-apoptotic proteins.Further, the loss of ECRG2’stumor suppressive abilities, as wehaveshownby the loss of ECRG2in lung patient tumor samples,and through the somatic point mutantV30E, illuminates possible mechanismsin which cancer cells can acquiremultiple drug resistance.