• Evidence for the multigenic inheritance of schizophrenia

      Freedman, Robert; Leonard, Sherry; Olincy, Ann; Kaufmann, Charles A.; Malaspina, Dolores; Cloninger, C. Robert; Svrakic, Dragan; Faraone, Stephen V.; Tsuang, Ming T. (Wiley, 2002-08-21)
      Schizophrenia is assumed to have complex inheritance because of its high prevalence and sporadic familial transmission. Findings of linkage on different chromosomes in various studies corroborate this assumption. It is not known whether these ®endings represent heterogeneous inheritance, in which various ethnic groups inherit illness through different major gene effects, or multigenic inheritance, in which affected individuals inherit several common genetic abnormalities. This study therefore examined inheritance of schizophrenia at different genetic loci in a nationally collected European American and African American sample. Seventy-seven families were previously genotyped at 458 markers for the NIMH Schizophrenia Genetics Initiative. Initial genetic analysis tested a dominant model, with schizophrenia and schizoaffective disorder, depressed type, as the affected phenotype. The families showed one genome-wide significant linkage (Z ¼ 3.97) at chromosome 15q14, which maps within 1 cM of a previous linkage at the a7-nicotinic receptor gene. Chromosome 10p13 showed suggestive linkage (Z ¼ 2.40). Six others (6q21, 9q32, 13q32, 15q24, 17p12, 20q13) were positive, with few differences between the two ethnic groups. The probability of each family transmitting schizophrenia through two genes is greater than expected from the combination of the independent segregation of each gene. Two trait-locus linkage analysis supports a model in which genetic alleles associated with schizophrenia are relatively common in the general population and affected individuals inherit risk for illness through at least two different loci.
    • Further investigation of a chromosome 15 locus in schizophrenia: Analysis of affected sibpairs from the NIMH genetics initiative

      Leonard, Sherry; Gault, Judith; Moore, Theodore; Hopkins, Jan; Robinson, Misi; Olincy, Ann; Adler, Lawrence E.; Cloninger, C. Robert; Kaufmann, Charles A.; Tsuang, Ming T.; et al. (Wiley, 1998-07-10)
      Linkage of a neurophysiological deficit associated with schizophrenia, i.e., the failure to inhibit the auditory P50 response, was previously reported at chromosome 15q14. The marker with the highest pairwise lod score, D15S1360, was isolated from a yeast artificial chromosome containing a candidate gene, the α7-nicotinic acetylcholine receptor gene. In the present study, this linkage was further investigated in a subset of the NIMH Genetics Initiative schizophrenia families. These families have not been studied neurophysiologically, as were the families in the original report. Therefore, the DSMIII-R diagnosis of schizophrenia was used as the affected phenotype. Twenty families fulfilled the criteria of at least one sibpair concordant for schizophrenia, along with their two parents or another affected relative outside the nuclear family, available for genotyping. Sibpair analysis showed a significant proportion of D15S1360 alleles shared identical-by-descent (0.58; P < 0.0024). The results further support the involvement of this chromosomal locus in the genetic transmission of schizophrenia. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 81:308–312, 1998. © 1998 Wiley-Liss, Inc.
    • Genome-wide search for schizophrenia susceptibility loci: The NIMH genetics initiative and millennium consortium

      Cloninger, C. Robert; Kaufmann, Charles A.; Faraone, Stephen V.; Malaspina, Dolores; Svrakic, Dragan M.; Harkavy-Friedman, Jill; Suarez, Brian K.; Matise, Tara C.; Shore, David; Lee, Hang; et al. (Wiley, 1998-07-10)
      chizophrenia has a complex pattern of inheritance, indicative of interactions among multiple genes and environmental factors. The detection and replication of specific susceptibility loci for such complex disorders are facilitated by the availability of large samples of affected sib pairs and their nuclear families, along with standardized assessment and systematic ascertainment procedures. The NIMH Genetics Initiative on Schizophrenia, a multisite collaborative study, was established as a national resource with a centralized clinical data base and cell repository. The Millennium Schizophrenia Consortium has completed a genome-wide scan to detect susceptibility loci for schizophrenia in 244 individuals from the nuclear families of 92 independent pairs of schizophrenic sibs ascertained by the NIMH Genetics Initiative. The 459 marker loci used in the scan were spaced at 10-cM intervals on average. Individuals of African descent were higher than those of European descent in their average heterozygosity (79% vs. 76%, P < .0001) and number of alleles per marker (9.2 vs. 8.4, P < .0001). Also, the allele frequencies of 73% of the marker loci differed significantly (P < .01) between individuals of European and African ancestry. However, regardless of ethnic background, this sample was largely comprised of schizophrenics with more than a decade of psychosis associated with pervasive social and occupational impairment. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 81:275–281, 1998. © 1998 Wiley-Liss, Inc.
    • NIMH genetics initiative millennium schizophrenia consortium: Linkage analysis of African-American pedigrees

      Kaufmann, Charles A.; Suarez, Brian; Malaspina, Dolores; Pepple, John; Svrakic, Dragan; Markel, Paul D.; Meyer, Joanne; Zambuto, Christopher T.; Schmitt, Karin; Matise, Tara Cox; et al. (Wiley, 1998-07-10)
      The NIMH Genetics Initiative is a multi-site collaborative study designed to create a national resource for genetic studies of complex neuropsychiatric disorders. Schizophrenia pedigrees have been collected at three sites: Washington University, Columbia University, and Harvard University. This article—one in a series that describes the results of a genome-wide scan with 459 short-tandem repeat (STR) markers for susceptibility loci in the NIMH Genetics Initiative schizophrenia sample—presents results for African-American pedigrees. The African-American sample comprises 30 nuclear families and 98 subjects. Seventy-nine of the family members were considered affected by virtue of having received a DSMIII-R diagnosis of schizophrenia (n = 71) or schizoaffective disorder, depressed (n = 8). The families contained a total of 42 independent sib pairs. While no region demonstrated evidence of significant linkage using the criteria suggested by Lander and Kruglyak, several regions, including chromosomes 6q16-6q24, 8pter-8q12, 9q32-9q34, and 15p13-15q12, showed evidence consistent with linkage (P = 0.01–0.05), providing independent support of findings reported in other studies. Moreover, the fact that different genetic loci were identified in this and in the European-American samples, lends credence to the notion that these genetic differences together with differences in environmental exposures may contribute to the reported differences in disease prevalence, severity, comorbidity, and course that has been observed in different racial groups in the United States and elsewhere. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 81:282–289, 1998. © 1998 Wiley-Liss, Inc.
    • Traumatic Brain Injury and Schizophrenia in Members of Schizophrenia and Bipolar Disorder Pedigrees

      Malaspina, Dolores; Goetz, Raymond R.; Friedman, Jill Harkavy; Kaufmann, Charles A.; Faraone, Stephen V.; Tsuang, Ming; Cloninger, C. Robert; Nurnberger, John I.; Blehar, Mary C. (American Psychiatric Association Publishing, 2001-03)
      Objective: Schizophrenia following a traumatic brain injury could be a phenocopy of genetic schizophrenia or the consequence of a gene-environment interaction. Alternatively, traumatic brain injury and schizophrenia could be spuriously associated if those who are predisposed to develop schizophrenia have greater amounts of trauma for other reasons. The authors investigated the relationship between traumatic brain injury and psychiatric diagnoses in a large group of subjects from families with at least two biologically related first-degree relatives with schizophrenia, schizoaffective disorder, or bipolar disorder. Method: The Diagnostic Interview for Genetic Studies was used to determine history of traumatic brain injury and diagnosis for 1,275 members of multiplex bipolar disorder pedigrees and 565 members of multiplex schizophrenia pedigrees. Results: Rates of traumatic brain injury were significantly higher for those with a diagnosis of schizophrenia, bipolar disorder, and depression than for those with no mental illness. However, multivariate analysis of within-pedigree data showed that mental illness was related to traumatic brain injury only in the schizophrenia pedigrees. Independent of diagnoses, family members of those with schizophrenia were more likely to have had traumatic brain injury than were members of the bipolar disorder pedigrees. The members of the schizophrenia pedigrees also failed to show the gender difference for traumatic brain injury (more common in men than in women) that was expected and was present in the bipolar disorder pedigrees. Subjects with a schizophrenia diagnosis who were members of the bipolar disorder pedigrees (and thus had less genetic vulnerability to schizophrenia) were less likely to have had traumatic brain injury (4.5%) than were subjects with schizophrenia who were members of the schizophrenia pedigrees (and who had greater genetic vulnerability to schizophrenia) (19.6%). Conclusions: Members of the schizophrenia pedigrees, even those without a schizophrenia diagnosis, had greater exposure to traumatic brain injury compared to members of the bipolar disorder pedigrees. Within the schizophrenia pedigrees, traumatic brain injury was associated with a greater risk of schizophrenia, consistent with synergistic effects between genetic vulnerability for schizophrenia and traumatic brain injury. Posttraumatic-braininjury schizophrenia in multiplex schizophrenia pedigrees does not appear to be a phenocopy of the genetic disorder.