• Advanced Paternal Age and Early Onset of Schizophrenia in Sporadic Cases: Not Confounded by Parental Polygenic Risk for Schizophrenia

      Wang, Shi-Heng; Hsiao, Po-Chang; Yeh, Ling-Ling; Liu, Chih-Min; Liu, Chen-Chung; Hwang, Tzung-Jeng; Hsieh, Ming H.; Chien, Yi-Ling; Lin, Yi-Ting; Huang, Yen-Tsung; et al. (Elsevier BV, 2019-07)
      BACKGROUND:Whether paternal age effect on schizophrenia is a causation or just an association due to con-founding by selection into late parenthood is still debated. We investigated the association between paternal age andearly onset of schizophrenia in offspring, controlling for both paternal and maternal predisposition to schizophrenia asempirically estimated using polygenic risk score (PRS) derived from the Psychiatric Genomics Consortium.METHODS:Among 2923 sporadic schizophrenia cases selected from the Schizophrenia Trio Genomic Research inTaiwan project, 1649 had parents’genotyping data. The relationships of paternal schizophrenia PRS to paternal ageatfirst birth (AFB) and of maternal schizophrenia PRS to maternal AFB were examined. A logistic regression model ofpatients’early onset of schizophrenia (#18 years old) on paternal age was conducted.RESULTS:Advanced paternal age over 20 years exhibited a trend of an increasing proportion of early onset ofschizophrenia (odds ratio per 10-year increase in paternal age = 1.28,p= .007) after adjusting for maternal age, sex,and age. Older paternal AFB also exhibited an increasing trend of paternal schizophrenia PRS. Additionally, aU-shaped relationship between maternal AFB and maternal schizophrenia PRS was observed. After adjusting forboth paternal and maternal schizophrenia PRS, the association of paternal age with patients’early onset ofschizophrenia remained (odds ratio = 1.29,p= .04).CONCLUSIONS:The association between paternal age and early onset of schizophrenia was not confounded byparental PRS for schizophrenia, which partially captures parental genetic vulnerability to schizophrenia. Ourfindingssupport an independent role of paternal age per se in increased risk of early onset of schizophrenia in offspring
    • Autophagy, apoptosis, and neurodevelopmental genes might underlie selective brain region vulnerability in attention-deficit/hyperactivity disorder

      Hess, Jonathan L.; Radonjić, Nevena V.; Patak, Jameson; Glatt, Stephen J.; Faraone, Stephen V. (Springer Science and Business Media LLC, 2020-12-18)
      Large-scale brain imaging studies by the ENIGMA Consortium identified structural changes associated with attentiondeficit/ hyperactivity disorder (ADHD). It is not clear why some brain regions are impaired and others spared by the etiological risks for ADHD. We hypothesized that spatial variation in brain cell organization and/or pathway expression levels contribute to selective brain region vulnerability (SBRV) in ADHD. In this study, we used the largest available collection of magnetic resonance imaging (MRI) results from the ADHD ENIGMA Consortium (subcortical MRI n = 3242; cortical MRI n = 4180) along with high-resolution postmortem brain microarray data from Allen Brain Atlas (donors n = 6) from 22 brain regions to investigate our SBRV hypothesis. We performed deconvolution of the bulk transcriptomic data to determine abundances of neuronal and nonneuronal cells in the brain. We assessed the relationships between gene-set expression levels, cell abundance, and standardized effect sizes representing regional changes in brain sizes in cases of ADHD. Our analysis yielded significant correlations between apoptosis, autophagy, and neurodevelopment genes with smaller brain sizes in ADHD, along with associations to regional abundances of astrocytes and oligodendrocytes. The lack of enrichment of common genetic risk variants for ADHD within implicated gene sets suggests an environmental etiology to these differences. This work provides novel mechanistic clues about SBRV in ADHD.
    • CAG-Repeat length in exon 1 of KCNN3 does not influence risk for schizophrenia or bipolar disorder: A meta-analysis of association studies

      Glatt, Stephen J.; Faraone, Stephen V.; Tsuang, Ming T. (Wiley, 2003-07-30)
      Schizophrenia and bipolar disorder both showsomeevidence for genetic anticipation. In addition, significant expansion of anonymous CAG repeats throughout the genome has been detected in both of these disorders. The gene KCNN3, which codes for a small/ intermediate conductance, calcium-regulated potassium channel, contains a highly polymorphic CAG-repeat array in exon 1. Initial evidence for association of both schizophrenia and bipolar disorder with increased CAG-repeat length of KCNN3 has not been consistently replicated. In the present study, we performed several metaanalyses to evaluate the pooled evidence for association with CAG-repeat length of KCNN3 derived from case-control and family-based studies of both disorders. Each group of studies was analyzed under two models, including a test for direct association with repeat length, and a test for association with dichotomized repeat-length groups. No evidence for a linear relationship between disease risk and repeat length was observed, as all pooled odds ratios approximated 1.0. Results of dichotomized allelegroup analyses were more variable, especially for schizophrenia, where case-control studies found a significant association with longer repeats but family-based studies implicated shorter alleles. The results of these meta-analyses demonstrate that the risks for both schizophrenia and bipolar disorder are largely, if not entirely, independent of CAG-repeat length in exon 1 of KCNN3. This study cannot exclude the possibility that some aspect of this polymorphism, such as repeat-length disparity in heterozygotes, influences risk for these disorders. Further, it remains unknown if this polymorphism, or one in linkage disequilibrium with it, contributes to some distinct feature of the disorder, such as symptom severity or anticipation.
    • Dr. Glatt and Colleagues Reply

      Glatt, Stephen J.; Faraone, Stephen V.; Tsuang, Ming T. (American Psychiatric Association Publishing, 2004-06)
    • The influence of genes on “positive valence systems” constructs: A systematic review

      Hess, Jonathan L.; Kawaguchi, Daniel M.; Wagner, Kayla E.; Faraone, Stephen V.; Glatt, Stephen J. (Wiley, 2015-09-14)
      The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative. © 2015 Wiley Periodicals, Inc.