• Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism

      Qian, Qiujin; Wang, Yufeng; Zhou, Rulun; Li, Jun; Wang, Bing; Glatt, Stephen; Faraone, Stephen V. (Wiley, 2003-03-04)
      Attention deficit hyperactivity disorder (ADHD) is the most common childhood-onset behavioral disorder. Boys are more often affected than girls. Family, twin, and adoption studies have supported a strong genetic basis. Some studies show that a catechol-O-methyltransferase (COMT) polymorphism affecting enzyme activity was associated with personality characteristics and diseases, such as novelty-seeking personality, substance abuse, and heroin addiction, whose features are similar to ADHD or are associated with ADHD. These findings suggest that the COMT gene may be a candidate gene for ADHD. TDT, HHRR, and case-control association studies were conducted within a sample of 202 nuclear ADHD families, 340 ADHD cases, and 226 controls in the Han Chinese population. Diagnoses and ADHD subtypes were ascertained according to DSM-IV criteria using American Clinical Diagnostic Interviewing Scales. The HHRR analysis suggested that the low enzyme-activity COMT Met allele was preferentially transmitted to ADHD boys (160 trios, χ2 = 3.858, P = 0.05, df = 1) but not girls. This association is particularly pronounced among male ADHD probands without any comorbidity (50 trios, HHRR: χ2 = 5.128, P = 0.024, df = 1; TDT: χ2 = 4.558, P = 0.033, df = 1), especially the ADHD-I subtype (32 trios, HHRR: χ2 = 5.792, P = 0.016, df = 1; TDT: χ2 = 5.333, P = 0.021, df = 1). The case-control study revealed that the Val allele was more frequent in females meeting ICD-10 or DSM-IV criteria for ADHD than in female controls (86 and 79.5%, respectively, χ2 = 4.059, P = 0.044, df = 1). Although these results suggest the COMT gene exerts some influence on the risk for ADHD in the Han Chinese population, given the potential for Type I error, these findings require replication before drawing definitive conclusions. © 2003 Wiley-Liss, Inc.