Browsing Mathematics Faculty Work by Subject "iterative algorithm"
Now showing items 1-1 of 1
-
A root-finding algorithm for cubicsNewton's method applied to a quadratic polynomial converges rapidly to a root for almost all starting points and almost all coefficients. This can be understood in terms of an associative binary operation arising from 2 x 2 matrices. Here we develop an analogous theory based on 3 x 3 matrices which yields a two-variable generally convergent algorithm for cubics.