• Amenability and superharmonic functions

      Northshield, Sam (Proceedings of the American Mathematical Society, 1993)
      Let G be a countable group and u a symmetric and aperiodic probability measure on G . We show that G is amenable if and only if every positive superharmonic function is nearly constant on certain arbitrarily large subsets of G. We use this to show that if G is amenable, then the Martin boundary of G contains a fixed point. More generally, we show that G is amenable if and only if each member of a certain family of G-spaces contains a fixed point.
    • On the spectrum and Martin boundary of homogeneous spaces

      Northshield, Sam (Statistics and Probability Letters, 1995)
      Given a conservative, spatially homogeneous Markov process X on an homogeneous spaces χ, we show that if the bottom of the spectrum of the generator of X is zero then the Martin boundary of contains a unique point fixed by the isometry group of χ.