Differentiating Climatic And Successional Influences On Long-Term Development Of A Marsh
dc.contributor.author | Singer, Darren K. | |
dc.contributor.author | Jackson, Stephen T. | |
dc.contributor.author | Madsen, Barbara J. | |
dc.contributor.author | Wilcox, Douglas A. | |
dc.date.accessioned | 2021-09-07T17:41:12Z | |
dc.date.available | 2021-09-07T17:41:12Z | |
dc.date.issued | 1996-01-01 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12648/2312 | |
dc.description | Copyright by the Ecological Society of America, Ecology, 77 ( 6 ) ,1996, pp. 1765-1778 Q 1996 by the Ecological Society of America --- Published while authors Madsen and Wilcox were employed by: National Biological Service, Great Lakes Science Center, Ann Arbor; Michigan 48105 USA | |
dc.description.abstract | Comparison of long-term records of local wetland vegetation dynamics with regional, climate-forced terrestrial vegetation changes can be used to differentiate the rates and effects of autogenic successional processes and allogenic environmental change on wetland vegetation dynamics. We studied Holocene plant macrofossil and pollen sequences from Portage Marsh, a shallow, 18-ha marsh in northeastern Indiana. Between 10 000 and 5700 yr BP the basin was occupied by a shallow, open lake, while upland vegetation consisted of mesic forests of Pinus, Quercus, Ulmus, and Carya. At 5700 yr BP the open lake was replaced rapidly by a shallow marsh, while simultaneously Quercus savanna developed on the surrounding uplands. The marsh was characterized by periodic drawdowns, and the uplands by periodic fires. Species composition of the marsh underwent further changes between 3000 and 2000 yr BP. Upland pollen spectra at Portage Marsh and other sites in the region shifted towards more mesic vegetation during that period. The consistency and temporal correspondence between the changes in upland vegetation and marsh vegetation indicate that the major vegetational changes in the marsh during the Holocene resulted from hydrologic changes forced by regional climate change. Progressive shallowing of the basin by autogenic accumulation of organic sediment constrained vegetational responses to climate change but did not serve as the direct mechanism of change. | |
dc.subject | Climate Change | |
dc.subject | Hydrological Change | |
dc.subject | Indiana | |
dc.subject | Lake Michigan | |
dc.subject | Paleoecology | |
dc.subject | Plant Macrofossils | |
dc.subject | Pollen | |
dc.subject | Succession | |
dc.subject | Vegetation Dynamics | |
dc.subject | Wetland Vegetation And Dynamics | |
dc.subject | SWRA | |
dc.title | Differentiating Climatic And Successional Influences On Long-Term Development Of A Marsh | |
dc.type | article | |
dc.source.journaltitle | Ecology | |
dc.source.volume | 77 | |
dc.source.issue | 6 | |
refterms.dateFOA | 2021-09-07T17:41:12Z | |
dc.description.institution | SUNY Brockport | |
dc.source.peerreviewed | TRUE | |
dc.source.status | published | |
dc.description.publicationtitle | Environmental Science and Ecology Faculty Publications | |
dc.contributor.organization | Northern Arizona University | |
dc.contributor.organization | The College at Brockport | |
dc.contributor.organization | University of Michigan - Ann Arbor | |
dc.languate.iso | en_US |