• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Faculty/Staff Publications
    • Environmental Science and Ecology Faculty Publications
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Faculty/Staff Publications
    • Environmental Science and Ecology Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects Of Coal Fly-Ash Disposal On Water Chemistry in an Intradunal Wetland at Indiana Dunes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    env_facpub/45/fulltext (1).pdf
    Size:
    393.9Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Wilcox, Douglas A.
    Hardy, Mark A.
    Keyword
    SWRA
    Journal title
    Interdisciplinary Approaches to Freshwater Wetlands Research
    Date Published
    1988-01-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/2307
    Abstract
    An intradunal wetland within the Indiana Dunes National Lakeshore on the south shore of Lake Michigan was flooded for 15 years by seepage from fly-ash settling ponds located adjacent to the park. Studies were undertaken to determine the effects of the seepage on water chemistry in the flooded wetlands. These water chemistry conditions have been correlated to ongoing studies of soil contamination and secondary succession in the wetland basin following cessation of seepage. The seepage increased the concentrations of calcium, potassium, sulfate, aluminum, boron, iron, manganese, molybdenum, nickel, strontium, and zinc in ground water and surface water downgradient from the settling ponds. Chemical interactions with aquifer materials, particularly organic matter, significantly limit the transport of aluminum, iron, nickel, and zinc in this system. The organic soils of the dewatered wetland basin now contain elevated concentrations of aluminum, boron, manganese, and zinc that are potentially phytotoxic under the low pH (<4) conditions that exist. Plant growth and secondary succession were affected by the soil chemistry of the dewatered wetlands.
    Collections
    Environmental Science and Ecology Faculty Publications

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.