Cattail Invasion of Sedge/Grass Meadows in Lake Ontario: Photointerpretation Analysis of Sixteen Wetlands over Five Decades
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Journal title
Journal of Great Lakes ResearchDate Published
2008-01-01Publication Volume
34
Metadata
Show full item recordAbstract
Photointerpretation studies were conducted to evaluate vegetation changes in wetlands of Lake Ontario and the upper St. Lawrence River associated with regulation of water levels since about 1960. The studies used photographs from 16 sites (four each from drowned river mouth, barrier beach, open embayment, and protected embayment wetlands) and spanned a period from the 1950s to 2001 at roughly decadal intervals. Meadow marsh was the most prominent vegetation type in most wetlands in the late 1950s when water levels had declined following high lake levels in the early 1950s. Meadow marsh increased at some sites in the mid-1960s in response to low lake levels and decreased at all sites in the late 1970s following a period of high lake levels. Typha increased at nearly all sites, except waveexposed open embayments, in the 1970s. Meadow marsh continued to decrease and Typha to increase at most sites during sustained higher lake levels through the 1980s, 1990s, and into 2001. Most vegetation changes could be correlated with lake-level changes and with life-history strategies and physiological tolerances to water depth of prominent taxa. Analyses of GIS coverages demonstrated that much of the Typha invasion was landward into meadow marsh, largely by Typha × glauca. Lesser expansion toward open water included both T. × glauca and T. angustifolia. Although many models focus on the seed bank as a key component of vegetative change in wetlands, our results suggest that canopy-dominating, moisture- requiring Typha was able to invade meadow marsh at higher elevations because sustained higher lake levels allowed it to survive and overtake sedges and grasses that can tolerate periods of drier soil conditions.Citation
J. Great Lakes Res. 34:301–323 Internat. Assoc. Great Lakes Res., 2008Description
Authors Wilcox, Kowalski, Hoare, and Carlson were government employees when this article was written.