• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Faculty/Staff Publications
    • Education and Human Development Faculty Publications
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Faculty/Staff Publications
    • Education and Human Development Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    FOUR COMPONENT INSTRUCTIONAL DESIGN (4C/ID) MODEL CONFIRMED FOR SECONDARY TERTIARY MATHEMATICS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ehd_facpub/30/fulltext (1).pdf
    Size:
    389.2Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Wade, Carol Henderson
    Wilkens, Christian P.
    Sonnert, Gerhard
    Sadler, Philip M.
    Keyword
    Research Methods
    Design Experiments
    Secondary-Tertiary Transition In Mathematics
    Journal title
    North American chapter of the International Group for the Psychology of Mathematics Education
    Date Published
    2020-12-01
    Publication Volume
    42
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/2225
    Abstract
    Cognitive load theory (CLT) was introduced in the 1980s as an instructional theory based on well accepted aspects of human cognitive architecture (Sweller, van Merriënboer, & Paas, 2019). A major premise of the theory is that working memory load from cognitive processes is decreased when domain specific schemas are activated from long term memory. Comprehension, schema construction, schema automation, and problem solving in working memory often create high cognitive load. Hence, schemas transported from long term memory into working memory support learning and transfer of learning (Ginns & Leppin, 2019). One of the key developments from CLT has been the Four-Component Instructional Design (4C/ID) Model generated from evolutionary theorizing (Geary, 2008; Ginns & Leppink, 2019). Since its creation, the 4C/ID Model has been successfully applied to instruction that requires the learning of complex tasks. Van Merriënboer, Kester, and Paas (2006) defined a complex task as having many different solutions, real world connections, requiring time to learn, and as creating a high cognitive load. Based on this definition, the instruction and learning of mathematics is a complex task. For example, different solutions are algebraic, analytic, numeric, and graphic. Relative to real world connections, mathematics is one of the domains in the broader science, technology, engineering, mathematics (STEM) field and is regarded as the language of the sciences. Regarding taking time to learn and creating a high load on learner’s cognitive systems, mathematics teachers deal with the tension between covering all the required standards and taking the time to teach for understanding. Teachers face challenging decisions about instructional approaches, materials, productive struggle, and the amount of classroom time spent on various standards. Better models for instruction that support transfer of learning could help teachers improve instructional decision making. Although the 4C/ID Model has been used in secondary mathematics education (Sarfo, & Elen, 2007; Wade, 2011), it has never been confirmed as a mathematical instructional theory. The purpose of this research report is to present an empirical confirmation of the 4C/ID Model, using data from the Factors Influencing College Success in Mathematics (FICSMath) project from Harvard University.
    Citation
    Full proceeding published as: Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.). (2020). Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA. https:/doi.org/10.51272/pmena.42.2020 ISBN: 978-1-7348057-0-3 Article doi: : 10.51272/pmena.42.2020-386
    DOI
    https://doi.org/10.51272/pmena.42.2020
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.51272/pmena.42.2020
    Scopus Count
    Collections
    Education and Human Development Faculty Publications

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.