• Login
    View Item 
    •   Home
    • University Colleges
    • SUNY Brockport
    • Faculty/Staff Publications
    • Brockport Earth Sciences Faculty Publications
    • View Item
    •   Home
    • University Colleges
    • SUNY Brockport
    • Faculty/Staff Publications
    • Brockport Earth Sciences Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateDutchessEmpireFredoniaMaritimeNew PaltzOld WestburyOneontaOnondagaOptometryOswegoPlattsburghPurchase CollegeSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy Rainfall Over the Central United States

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    esc_facpub/4/fulltext (1).pdf
    Size:
    949.9Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Moore, James T.
    Glass, Fred H.
    Graves, Charles E.
    Rochette, Scott M.
    Singer, Mark J.
    Journal title
    Weather and Forecasting
    Date Published
    2003-10-01
    Publication Volume
    18
    Publication Issue
    5
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/2194
    Abstract
    Twenty-one warm-season heavy-rainfall events in the central United States produced by mesoscale convective systems (MCSs) that developed above and north of a surface boundary are examined to define the environmental conditions and physical processes associated with these phenomena. Storm-relative composites of numerous kinematic and thermodynamic fields are computed by centering on the heavy-rain-producing region of the parent elevated MCS. Results reveal that the heavy-rain region of elevated MCSs is located on average about 160 km north of a quasi-stationary frontal zone, in a region of low-level moisture convergence that is elongated westward on the cool side of the boundary. The MCS is located within the left-exit region of a south-southwesterly lowlevel jet (LLJ) and the right-entrance region of an upper-level jet positioned well north of the MCS site. The LLJ is directed toward a divergence maximum at 250 hPa that is coincident with the MCS site. Near-surface winds are light and from the southeast within a boundary layer that is statically stable and cool. Winds veer considerably with height (about 1408) from 850 to 250 hPa, a layer associated with warm-air advection. The MCS is located in a maximum of positive equivalent potential temperature ue advection, moisture convergence, and positive thermal advection at 850 hPa. Composite fields at 500 hPa show that the MCS forms in a region of weak anticyclonic curvature in the height field with marginal positive vorticity advection. Even though surfacebased stability fields indicate stable low-level air, there is a layer of convectively unstable air with maximumu e CAPE values of more than 1000 J kg21 in the vicinity of the MCS site and higher values upstream. Maximumu e convective inhibition (CIN) values over the MCS centroid site are small (less than 40 J kg21) while to the south convection is limited by large values of CIN (greater than 60 J kg21). Surface-to-500-hPa composite average relative humidity values are about 70%, and composite precipitable water values average about 3.18 cm (1.25 in.). The representativeness of the composite analysis is also examined. Last, a schematic conceptual model based upon the composite fields is presented that depicts the typical environment favorable for the development of elevated thunderstorms that lead to heavy rainfall.
    Citation
    Moore, J. T., Glass, F.H., Graves, C.E., Rochette, S.M. and Singer, M.J., 2003, The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy Rainfall Over the Central United States, Wea. Forecasting , 18 (5), 861-878. Available on publisher's site at http://journals.ametsoc.org/doi/abs/10.1175/1520-0434(2003)018%3C0861%3ATEOWET%3E2.0.CO%3B2
    DOI
    https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2
    Description
    Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2
    Scopus Count
    Collections
    Brockport Earth Sciences Faculty Publications

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.