Functional Studies of Tumor Suppressor ECRG2 in the Regulation of Cancer Cell Death and Drug Resistance
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Lucchesi, ChrisDate Published
2015
Metadata
Show full item recordAbstract
Esophageal Cancer Related Gene 2 (ECRG2) is a newer tumor suppressor whose mRNAhas previously been shown to be decreased in multiple human malignanceswhencompared to normal/adjacent tissues.Of importance, ECRG2 has previously been revealedto possess tumor suppressive attributes,including the ability to induce cell death in cancer cells. However, how ECRG2 is able to activate the apoptotic machinery has yet to be elucidated. In the present study,we highlight multiple angles that ECRG2 leverages in order to sensitize cancer cells to apoptosis. Moreover, we report for the first time,that ECRG2 protein expression in lung cancer patientsamples is lost/decreased in upwards of 90% ofthecancer tissues evaluatedcompared to normal tissue. Additionally, a single somatic point mutant found in patient tumor samples, V30E, was shown to lose tumor suppressive abilities and acquired resistance against multiple anticancer drugs. Our results demonstrate that ECRG2is upregulated in response to DNA damage, andis capable of inducing the activation of both caspase cascades (intrinsic and extrinsic) leadingto cancer cell death. We further illustratedthat ECRG2-mediated cell deathwasattributed to a reduction in the levels of apoptosis inhibitor, X chromosome-linked inhibitor of apoptosis protein (XIAP). ECRG2 was revealedto regulate XIAP protein levels via RNA-binding protein,human antigen R(HuR).We further highlight that ECRG2 causes increased HuR ubiquitination,subsequently leading to its degradation. Thus, we demonstrate that ECRG2 sensitizescancer cells to apoptosis through the downregulation of HuR, and consequent downregulation of XIAP. Next, we have identified ECRG2 as a potent positive regulator of death receptor 5 (DR5) gene expression.ECRG2-mediated upregulation of DR5 was shown to be facilitated through the upregulation of tumor suppressor p53 and transcription factors ATF3 and NFⱪB. Together, in a cooperative fashion, increased levelsof p53, ATF3 and NFⱪB stimulateDR5 gene expression. Contrastingly, silencing of ECRG2 not only decreased the levels of NFⱪB and DR5, but also resulted in decreased cancer cell sensitivity to genotoxic stressandTRAIL treatment. Collectively,our work establishes that ECRG2 is capable of inducing apoptosis in cancer cells by increasing the expression of pro-apoptotic proteins, while also negatively influencing anti-apoptotic proteins.Further, the loss of ECRG2’stumor suppressive abilities, as wehaveshownby the loss of ECRG2in lung patient tumor samples,and through the somatic point mutantV30E, illuminates possible mechanismsin which cancer cells can acquiremultiple drug resistance.Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International