Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Papillion, AmberDate Published
2017
Metadata
Show full item recordAbstract
IgM memory cells are recognized as an important component of B cell memory, based on several studies both in mice and humans. Our studies of B cells elicited in response to ehrlichial infection identified a population of CD11c/T-bet-positive IgM memory cells and an IgM T-bet-positive bone marrow antibody-secreting cell population (ASCs). The origin of these populations was unknown, although an early T-independent spleen CD11c-and T-bet-positive IgM plasmablast population precedes both, suggesting a linear relationship. The majority of IgM memory cells detected after day 30 post-infection had undergone somatic hypermutation, indicating that they expressed activation-induced cytidine deaminase (AID). Therefore, to identify early AID-expressing precursor cells, we infected an AID-regulated tamoxifen-inducible Cre-recombinase-EYFP reporter strain. Tamoxifen administration led to labeling of both the IgM memory cells and bone marrow ASCs on day 30 and later post-infection. High frequencies of labeled cells were identified on day 30 post-infection,following tamoxifen administration on day 10 post-infection. Both IgM memory cells and IgM bone marrow ASCs were labeled when tamoxifen was administered as early as day 4 post-infection. We also identified mechanisms involved in maintenance of the IgM bone marrow ASCs and IgM+ memory cells, namely proliferation and FcγRIIb respectively. BrdU studies revealed that the bone marrow IgM ASCs were maintained by proliferation, unlike the IgM memory cells. RNAseq analysis revealed a 2-fold higher expression of inhibitory Fc receptor, FcγRIIb. Because FcγRIIb inhibits B cell activation, we hypothesized that FcγRIIb negatively regulates IgM+ memory B cells by binding immune complexes present during low-level chronic infection. E. murisinfection of FcγRIIb-deficientmice revealed a 3-fold expansion of the IgM+ memory 30 days post-infection. We further demonstrated that the expansion of the IgM+ memory cells was not due to increased proliferation, but a decrease of apoptosis, due to a lack of Fas expression in FcγRIIb-deficient mice. This result was mimicked in AID-deficient mice, which lack the ability to class switch to IgG and make immune complexes, revealing a role for immune complexes in regulating IgM+ memory. Altogether, these studies demonstrate a novel germinal center-independent pathway for the generation of two distinct long-term IgM-positive B cell populations.Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International