ULTRATHIN HIGH-K OXIDES FOR AREA-SELECTIVE DEPOSITION AND CHARACTERIZATION BY BALLISTIC ELECTRON EMISSION MICROSCOPY AND X-RAY PHOTOEMISSION SPECTROSCOPY
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Rogers, JackKeyword
ballistic electron emission microscopy (BEEM)semiconductor devices
Insulators
gate oxides
spacers
metal-oxide-semiconductor (MOS)
current-voltage (IV)
capacitance-voltage (CV)
edge placement error (EPE)
atomic layer deposition (ALD)
electrostatic barriers
self-assembled monolayer (SAM)
Date Published
2021-05
Metadata
Show full item recordAbstract
Insulators play an important role in the architecture and resulting performance of semiconductor devices manufactured today. Materials such as HfO2 and Al2O3 are utilized as gate oxides and spacers to control leakage current and enable bottom-up self-aligned patterning of device features. Understanding the electrostatic barrier that forms at the metal-oxide-semiconductor (MOS) interface is crucial in the development of field effect transistors and other devices, especially as the scaling of device features continues to shrink into the nanoscale. Characterization of the barrier height using current-voltage (IV) and capacitance-voltage (CV) techniques provides only a spatially averaged view of the interface, and is incapable of accounting for local nonuniformity which arises at nanoscale dimensions. Additionally, common lithographic strategies for patterning small feature oxides are limited by printing misalignments such as edge placement error (EPE), and in order to achieve smaller pitch sizes lithography steps must be repeated multiple times which adds time and cost to the process. The feasibility of uniform, cost-effective insulator films at the 5 nm technology node and beyond relies on the development of new deposition strategies. In this thesis, hafnium oxide grown using atomic layer deposition (ALD) is examined with ballistic electron emission microscopy (BEEM). Localized nonuniformities in the barrier height are found to exist for two identically prepared samples which reveal three distinct electrostatic barriers at the buried Au/HfO2/SiO2/Si-p interface, including a novel barrier found at 0.45 eV due to ultrathin HfO2. The results uncover changes in electrostatic behavior of the film which are otherwise impossible to detect using spatially averaged techniques. These variations in barrier height are visualized in a novel way that produces spatial maps showing transitions between high energy and lower energy barriers across a few nanometers. The resolution of this mapping technique is determined by comparing the measured barrier heights of Au/Si(001) and Au/Si(111) interfaces. Momentum conservation and electron scattering result in slightly different barrier heights for both interfaces that depends on metal thickness. The Rayleigh criterion is applied to the barrier height distributions as a function of metal thickness, resulting in a 10 meV resolution. Both aluminum oxide and hafnium oxide are also selectively grown on patterned metal / low-k silicon wafers using ALD. Self-assembled monolayer (SAM) materials such as octodecanethiol (ODT) and dodecanethiol (DDT) -which are functionalized to metal -are first deposited on the copper lines in order to block high-k film deposi¬tion on metal. Both HfO2 and Al2O3 are shown to selectively cover the low-k lines for linespace pitches greater than 100 nm and 5 mM concentration of SAM, and better selectivity is achieved for smaller pitches using lower SAM concentrations. Selectivity is measured qualitatively and quantitatively using x-ray photoemission spectroscopy and confirmed with transmission electron microscopy.