• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ULTRATHIN HIGH-K OXIDES FOR AREA-SELECTIVE DEPOSITION AND CHARACTERIZATION BY BALLISTIC ELECTRON EMISSION MICROSCOPY AND X-RAY PHOTOEMISSION SPECTROSCOPY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    jrthesis.pdf
    Size:
    3.072Mb
    Format:
    PDF
    Description:
    Final Dissertation Submission
    Download
    Thumbnail
    Name:
    Non-exclusive Distribution ...
    Size:
    451.3Kb
    Format:
    PDF
    Description:
    Non-exclusive distribution license
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Rogers, Jack
    Keyword
    ballistic electron emission microscopy (BEEM)
    semiconductor devices
    Insulators
    gate oxides
    spacers
    metal-oxide-semiconductor (MOS)
    current-voltage (IV)
    capacitance-voltage (CV)
    edge placement error (EPE)
    atomic layer deposition (ALD)
    electrostatic barriers
    self-assembled monolayer (SAM)
    Show allShow less
    Date Published
    2021-05
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1821
    Abstract
    Insulators play an important role in the architecture and resulting performance of semiconductor devices manufactured today. Materials such as HfO2 and Al2O3 are utilized as gate oxides and spacers to control leakage current and enable bottom-up self-aligned patterning of device features. Understanding the electrostatic barrier that forms at the metal-oxide-semiconductor (MOS) interface is crucial in the development of field effect transistors and other devices, especially as the scaling of device features continues to shrink into the nanoscale. Characterization of the barrier height using current-voltage (IV) and capacitance-voltage (CV) techniques provides only a spatially averaged view of the interface, and is incapable of accounting for local nonuniformity which arises at nanoscale dimensions. Additionally, common lithographic strategies for patterning small feature oxides are limited by printing misalignments such as edge placement error (EPE), and in order to achieve smaller pitch sizes lithography steps must be repeated multiple times which adds time and cost to the process. The feasibility of uniform, cost-effective insulator films at the 5 nm technology node and beyond relies on the development of new deposition strategies. In this thesis, hafnium oxide grown using atomic layer deposition (ALD) is examined with ballistic electron emission microscopy (BEEM). Localized nonuniformities in the barrier height are found to exist for two identically prepared samples which reveal three distinct electrostatic barriers at the buried Au/HfO2/SiO2/Si-p interface, including a novel barrier found at 0.45 eV due to ultrathin HfO2. The results uncover changes in electrostatic behavior of the film which are otherwise impossible to detect using spatially averaged techniques. These variations in barrier height are visualized in a novel way that produces spatial maps showing transitions between high energy and lower energy barriers across a few nanometers. The resolution of this mapping technique is determined by comparing the measured barrier heights of Au/Si(001) and Au/Si(111) interfaces. Momentum conservation and electron scattering result in slightly different barrier heights for both interfaces that depends on metal thickness. The Rayleigh criterion is applied to the barrier height distributions as a function of metal thickness, resulting in a 10 meV resolution. Both aluminum oxide and hafnium oxide are also selectively grown on patterned metal / low-k silicon wafers using ALD. Self-assembled monolayer (SAM) materials such as octodecanethiol (ODT) and dodecanethiol (DDT) -which are functionalized to metal -are first deposited on the copper lines in order to block high-k film deposi¬tion on metal. Both HfO2 and Al2O3 are shown to selectively cover the low-k lines for linespace pitches greater than 100 nm and 5 mM concentration of SAM, and better selectivity is achieved for smaller pitches using lower SAM concentrations. Selectivity is measured qualitatively and quantitatively using x-ray photoemission spectroscopy and confirmed with transmission electron microscopy.
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.