Machine-Learning Prediction of Comorbid Substance Use Disorders in ADHD Youth Using Swedish Registry Data
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Zhang-James, YanliChen, Qi
Kuja-Halkola, Ralf
Lichtenstein, Paul
Larsson, Henrik
Faraone, Stephen V.
Date Published
2019-06-06
Metadata
Show full item recordAbstract
Background: Children with attention-deficit/hyperactivity disorder (ADHD) have a high risk for substance use disorders (SUDs). Early identification of at-risk youth would help allocate scarce resources for prevention programs. Methods: Psychiatric and somatic diagnoses, family history of these disorders, measures of socioeconomic distress, and information about birth complications were obtained from the national registers in Sweden for 19,787 children with ADHD born between 1989 and 1993. We trained (a) a cross-sectional random forest (RF) model using data available by age 17 to predict SUD diagnosis between ages 18 and 19; and (b) a longitudinal recurrent neural network (RNN) model with the Long Short-Term Memory (LSTM) architecture to predict new diagnoses at each age. Results: The area under the receiver operating characteristic curve (AUC) was 0.73(95%CI 0.70–0.76) for the random forest model (RF). Removing prior diagnosis from the predictors, the RF model was still able to achieve significant AUCs when predicting all SUD diagnoses (0.69, 95%CI 0.66–0.72) or new diagnoses (0.67, 95%CI: 0.64, 0.71) during age 18–19. For the model predicting new diagnoses, model calibration was good with a low Brier score of 0.086. Longitudinal LSTM model was able to predict later SUD risks at as early as 2 years age, 10 years before the earliest diagnosis. The average AUC from longitudinal models predicting new diagnoses 1, 2, 5 and 10 years in the future was 0.63. Conclusions: Population registry data can be used to predict at-risk comorbid SUDs in individuals with ADHD. Such predictions can be made many years prior to age of the onset, and their SUD risks can be monitored using longitudinal models over years during child development. Nevertheless, more work is needed to create prediction models based on electronic health records or linked population registers that are sufficiently accurate for use in the clinic.DOI
10.1101/661983ae974a485f413a2113503eed53cd6c53
10.1101/661983
Scopus Count
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International