Characterization of Hic-5 in Cancer Associated Fibroblasts: A Role in Extracellular Matrix Deposition and Remodeling
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Goreczny, GregoryDate Published
2017
Metadata
Show full item recordAbstract
Hic-5 (TGFβ1i1) is a focal adhesion scaffold protein that has previously been implicated in many cancer-related processes. However, the contribution of Hic-5 during tumor progression has never been evaluated, in vivo. In Chapter 2 of this thesis, I crossed our Hic-5 knockout mouse with the MMTV-PyMT breast tumor mouse model to assess the role of Hic-5 in breast tumorigenesis. Tumors from the Hic-5 -/-;PyMT mouse exhibited an increased latency and reduced tumor growth. Immunohistochemical analysis of the Hic-5 -/-;PyMT tumors revealed that the tumor cells were less proliferative. However isolated tumor cells exhibit no difference in growth rate. Surprisingly, Hic-5 expression was restricted to the tumor stroma. Further analysis showed that Hic-5 regulates Cancer Associated Fibroblast (CAF) contractility and differentiation which resulted in a reduced ability to deposit and reorganize the extracellular matrix (ECM) in two-and three-dimensions. Furthermore, Hic-5 dependent ECM remodeling supported the ability of tumor cells to metastasize and colonize the lungs.The molecular mechanisms by which CAFs mediate ECM remodeling remains incompletely understood. In Chapter 3 of this thesis, I show that Hic-5 is required to generate fibrillar adhesions, which are specialized structures that are critical for the assembly of fibronectin fibers. Hic-5 was found to promote fibrillar adhesion formation through a newly characterized interaction with tensin1, a scaffold protein that binds to β1 integrin and actin. Furthermore, this interaction was mediated by Src-dependent phosphorylation of Hic-5 in two and three-dimensional matrix environments to prevent β1 integrin internalization and subsequent degradation in the lysosome. This work highlights the importance of the focal adhesion protein, Hic-5 during breast tumorigenesis and provides insight into the molecular machinery driving CAF-mediated ECM remodeling.Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International