• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mapping, Implementing, and Programming Spiking Neural Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    wilkie olin-ammentorp disserta ...
    Size:
    5.600Mb
    Format:
    PDF
    Description:
    Final Dissertation Submission
    Download
    Thumbnail
    Name:
    Distribution License.pdf
    Size:
    123.8Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Olin-Ammentorp, Wilkie
    Keyword
    Neural networks (Computer science)
    Computer network architectures
    Date Published
    2019-03
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1646
    Abstract
    Computer architectures inspired by biological neural networks are currently an area of growing interest, due to immense utility of these systems which is shown by their near-ubiquity within animals. An essential aspect of these systems is their ability to compute through the exchange of temporal events called ‘spikes.’ However, many aspects of biological computation remain unknown. To improve our ability to measure neural systems, we create an efficient implementation and statistical testing method to calculate an information-theory based metric, transfer entropy, on signals recorded from cultures of neurons. Taking inspiration from established knowledge regarding biological neurons, we investigate the impact which stochastic behavior has on the robustness of spiking networks when their synaptic weights are inaccurate. We find that a level of stochasticity can help improve this robustness. Lastly, we investigate methods of creating programs for spike-based computation through evolutionary optimization methods, and identify opportunities and challenges in this area.
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.