• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Downstate Health Sciences University
    • Downstate School of Graduate Studies Theses and Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Downstate Health Sciences University
    • Downstate School of Graduate Studies Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateDutchessEmpireFarmingdaleFinger LakesFredoniaHerkimerMaritimeNew PaltzNiagaraOld WestburyOneontaOnondagaOptometryOswegoPlattsburghPurchase CollegePolytechnic InstituteSUNY Office of Workforce Development and Upward MobilitySUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Regional Variations in Microstructure and Biomechanical Properties of the Human Vertebral Endplate and Trabecular Bone.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Xavier PhD Thesis Sept 13.pdf
    Size:
    33.02Mb
    Format:
    PDF
    Description:
    Doctoral Dissertation
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Xavier, Fred
    Readers/Advisors
    Saha, Subrata
    Term and Year
    Spring 2015
    Date Published
    2015-08-04
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/16147
    Abstract
    Vertebral compression fractures represent one of the most common injuries resulting from osteoporosis with an incidence rate of 700,000 per year in the United States. Spinal osteoporosis affects the anterior part of the vertebrae, leading to its collapse and kyphosis. However, there is limited data on the regional differences in the microstructure of the vertebral endplate and cancellous bone and their relationships with degenerative disc diseases and vertebral fractures. Does bone resorption occur at a higher rate in the anterior than in the lateral region of the vertebra? We conducted shear testing experiments on isolated cylindrical bone cores of thoracic vertebrae. Our data showed a 5-fold increase in mechanical strength from the anterior to the lateral regions of both endplate and cancellous bone (p=0.04). Material and ash density measurements correlated positively with shear strength. We further studied the regional variation in biomechanical properties inside human and bovine thoracic vertebrae using surgical anterior self-tapping cancellous screws. Our results showed a trend for increased insertion torque, pullout strength, and stiffness from divergent (laterally oriented) to convergent (centrally oriented) screws. Radiological image analyses from Faxitron X-ray, CT scan, and microCT confirmed that density was higher in the central than in the lateral regions of the cancellous bone. However, we observed the opposite relationship at the cervical and lumbar levels where the divergent screw configuration was mechanically stronger than the convergent one. According to our histological analyses, the density of microvessels at the vertebral endplate decreased from central to lateral regions by 15%. The ratio bone volume over total volume (BV/TV) increased by 31% from superior to inferior bony endplates. There was a decrease in the ratio osteoid matrix surface/bone surface (OS/BS) by 20% from superior to inferior bony endplates. We also observed that older individuals with increased degenerative disc diseases (DDD) had lower cancellous bone density, but higher bone remodeling activity than younger ones. The biomechanical properties of both endplate and cancellous bone vary considerably within the human spinal column. The lateral region of the vertebral body (EP and cancellous) is denser and stronger at the cervical and lumbar levels. The opposite relationship is observed in the thoracic segment. Newer implants could prioritize a lateral or central loading accordingly; thus, reducing the likelihood of screw loosening and the subsidence of disc replacement devices. Moreover, the superior endplate is weaker than the inferior, but more porous, and probably more important for the diffusion of nutrients to the nucleus pulposus. Therefore, the likelihood of disc degeneration might increase with superior endplate injuries.
    Citation
    Xavier, F. (2015). Regional Variations in Microstructure and Biomechanical Properties of the Human Vertebral Endplate and Trabecular Bone. [Doctoral dissertation, SUNY Downstate Health Sciences University]. SUNY Open Access Repository. https://soar.suny.edu/handle/20.500.12648/16147
    Description
    Doctoral Dissertation
    Collections
    Downstate School of Graduate Studies Theses and Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.