• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Wireless Intrusion Detection for the Next Generation (5G) Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ferrucci_5G Wireless Security.pdf
    Size:
    395.0Kb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Ferrucci, Richard
    Kholidy, Hisham A.; Advisor
    Keyword
    5G systems
    cybersecurity
    intrusion detection
    machine learning
    Device2Device
    LogIT boost
    wireless systems
    Date Published
    2020-05
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1607
    Abstract
    5G data systems are closed to delivery to the public. The question remains how security will impact the release of this cutting edge architecture. 5G data systems will be sending massive amounts of personal data due to the fact that everybody in the world is using mobile phones these days. With everyone using a 5G device, this architecture will have a huge surface area for attackers to compromise. Using machine learning techniques previously applied to 802.11 networks. We will show that improving upon these previous works, we can have a better handle on security when it comes to 5G architecture security. We find that using a machine learning classifier known as LogIT boost, combined with a selected combination of feature selection, we can provide optimal results in identifying three different classes of traffic referred to as normal, flooding, and injection traffic. We drastically decrease the time taken to perform this classification while improving the results. We simulate the Device2Device (D2D) connections involved in the 5G systems using the AWID dataset. The evaluation and validation of the classification approach are discussed in details in this thesis.
    Citation
    Ferrucci, R., & Kholidy, H. A. (2020, May). A Wireless Intrusion Detection for the Next Generation (5G) Networks: A Master’s Thesis Presented to the Department of Network and Computer Security in Partial Fulfillment of the Requirements for the Master of Science Degree. Department of Network and Computer Security, College of Engineering, SUNY Polytechnic Institute.
    Collections
    SUNY Polytechnic Institute College of Engineering

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.